Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T19:30:19.087Z Has data issue: false hasContentIssue false

Conditional sampling of transitional boundary layers in pressure gradients

Published online by Cambridge University Press:  09 July 2013

Kevin P. Nolan
Affiliation:
Department of Mechanical Engineering, Imperial College, London SW7 2AZ, UK
Tamer A. Zaki*
Affiliation:
Department of Mechanical Engineering, Imperial College, London SW7 2AZ, UK
*
Email address for correspondence: t.zaki@imperial.ac.uk

Abstract

Statistical analysis of transitional boundary layers in pressure gradients is performed using the flow fields from direct numerical simulations of bypass transition. Laminar–turbulent discrimination separates the streaky laminar flow from turbulent regions. Individual streaks are identified and tracked in the flow field in order to obtain statistics of the amplitude of the streak population. An extreme value model is proposed for the distribution of streak amplitudes. It is also possible to differentiate those streaks which break down into turbulent spots from innocuous events. It is shown that turbulence onset is due to high-amplitude streaks, with streamwise perturbation velocity exceeding 20 % of the free stream speed. The resulting turbulent spots are tracked downstream. The current analysis allows for the measurement of the lateral spreading angles of individual spots and their spatial extent and volumes. It is demonstrated that the volumetric growth rate of turbulent spots is insensitive to pressure gradient.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Ghannam, B. & Shaw, R. 1980 Natural transition of boundary layers – the effects of turbulence, pressure gradient, flow history. J. Mech. Engng Sci. 22, 213228.CrossRefGoogle Scholar
Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11 (1), 134150.CrossRefGoogle Scholar
Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.CrossRefGoogle Scholar
Anthony, R., Jones, T. & LaGraff, J. 2005 High frequency surface heat flux imaging of bypass transition. Trans. ASME: J. Turbomach. 127, 241250.Google Scholar
Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary layers subject to free stream turbulence. J. Fluid Mech. 517, 167198.CrossRefGoogle Scholar
Cantwell, B., Coles, D. & Dimotakis, P. 1978 Structure and entrainment in the plane of symmetry of a turbulent spot. J. Fluid Mech. 87 (04), 641672.CrossRefGoogle Scholar
Ching, C. Y. & LaGraff, J. E. 1995 Measurement of turbulent spot convection rates in a transitional boundary layer. Exp. Therm. Fluid Sci. 11 (1), 5260.CrossRefGoogle Scholar
Chong, T. P. & Zhong, S. 2005 On the three-dimensional structure of turbulent spots. Trans. ASME: J. Turbomach. 127 (3), 545551.Google Scholar
Coles, S. 2001 An Introduction to Statistical Modelling of Extreme Values. Springer.CrossRefGoogle Scholar
Dhawan, S. & Narasimha, R. 1958 Some properties of boundary layer flow during the transition from laminar to turbulent motion. J. Fluid Mech. 3 (04), 418436.CrossRefGoogle Scholar
Durbin, P. & Wu, X. 2007 Transition beneath vortical disturbances. Annu. Rev. Fluid Mech. 39 (1), 107128.CrossRefGoogle Scholar
Emmons, H. W. 1951 The laminar–turbulent transition in a boundary layer. Part I. J. Aero. Sci. 18, 490498.CrossRefGoogle Scholar
Gad-El-Hak, M., Blackwelderf, R. F. & Riley, J. J. 1981 On the growth of turbulent regions in laminar boundary layers. J. Fluid Mech. 110, 7395.CrossRefGoogle Scholar
Goldstein, M. & Wundrow, D. 1998 On the environmental realizability of algebraically growing disturbances and their relation to Klebanoff modes. Theor. Comput. Fluid Dyn. 10, 171186.CrossRefGoogle Scholar
Hedley, T. B. & Keffer, J. F. 1974 Turbulent/non-turbulent decisions in an intermittent flow. J. Fluid Mech. 64 (04), 625644.CrossRefGoogle Scholar
Hernon, D., Walsh, E. J. & McEligot, D. M. 2007 Experimental investigation into the routes to bypass transition and the shear-sheltering phenomenon. J. Fluid Mech. 591, 461479.CrossRefGoogle Scholar
Hultgren, L. S. & Gustavsson, L. H. 1981 Algebraic growth of disturbances in a laminar boundary layer. Phys. Fluids 24 (6), 10001004.CrossRefGoogle Scholar
Jacobs, R. G. & Durbin, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185212.CrossRefGoogle Scholar
Kendall, J. 1991 Studies on laminar boundary-layer receptivity to free stream turbulence near a leading edge. In Boundary Layer Stability and Transition to Turbulence (ed. Reda, X. et al. ), ASME-FED, vol. 114. pp. 2330.Google Scholar
Klebanoff, P. 1971 Effect of free stream turbulence on the laminar boundary layer. Bull. Am. Phys. Soc. 10, 1323.Google Scholar
Kleiser, L. & Zang, T. A. 1991 Numerical simulation of transition in wall-bounded shear flows. Annu. Rev. Fluid Mech. 23 (1), 495537.CrossRefGoogle Scholar
Landahl, M. T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Maths 28 (4), 735756.CrossRefGoogle Scholar
Lin, J., Laval, J., Foucaut, J. & Stanislas, M. 2008 Quantitative characterization of coherent structures in the buffer layer of near-wall turbulence. Part 1. Streaks. Exp. Fluids 45, 9991013.CrossRefGoogle Scholar
Liu, Y., Zaki, T. A. & Durbin, P. A. 2008a Boundary layer transition by interaction of discrete and continuous modes. J. Fluid Mech. 604, 199233.CrossRefGoogle Scholar
Liu, Y., Zaki, T. A. & Durbin, P. A. 2008b Floquet analysis of the interaction of Klebanoff streaks and Tollmien–Schlichting waves. Phys. Fluids 20, 124192.CrossRefGoogle Scholar
Mans, J., Kadijk, E., Lange, H. & Steenhoven, A. 2005 Breakdown in a boundary layer exposed to free stream turbulence. Exp. Fluids 39 (6), 10711083.CrossRefGoogle Scholar
Marquillie, M., Ehrenstein, U. & Laval, J.-P. 2011 Instability of streaks in wall turbulence with adverse pressure gradient. J. Fluid Mech. 681, 205240.CrossRefGoogle Scholar
Matsubara, M. & Alfredsson, P. 2001 Disturbance growth in boundary layers subjected to free stream turbulence. J. Fluid Mech. 430, 149168.CrossRefGoogle Scholar
Mayle, R. E. 1999 A theory for predicting the turbulent-spot production rate. Trans. ASME: J. Turbomach. 121 (3), 588593.Google Scholar
Nagarajan, S., Lele, S. K. & Ferziger, J. H. 2007 Leading-edge effects in bypass transition. J. Fluid Mech. 572, 471504.CrossRefGoogle Scholar
Nolan, K. P. & Walsh, E. J. 2012 Particle image velocimetry measurements of a transitional boundary layer under free stream turbulence. J. Fluid Mech. 702, 215238.CrossRefGoogle Scholar
Nolan, K. P., Walsh, E. J. & McEligot, D. M. 2010 Quadrant analysis of a transitional boundary layer subject to free stream turbulence. J. Fluid Mech. 658, 310335.CrossRefGoogle Scholar
Otsu, N. 1979 A threshold selection method from grey-level histograms. IEEE Trans. Syst. Man Cybern. 9 (1), 6266.CrossRefGoogle Scholar
Park, G. I., Wallace, J. M., Wu, X. & Moin, P. 2012 Boundary layer turbulence in transitional and developed states. Phys. Fluids 24 (3), 035105.CrossRefGoogle Scholar
Phillips, O. 1969 Shear-flow turbulence. Annu. Rev. Fluid Mech. 1, 245264.CrossRefGoogle Scholar
Pope, S. B. 2001 Turbulent Flows. Cambridge University Press.Google Scholar
Rosenfeld, M., Kwak, D. & Vinokur, M. 1991 A fractional step solution method for the unsteady incompressible Navier–Stokes equations in generalized coordinate systems. J. Comput. Phys. 94 (1), 102137.CrossRefGoogle Scholar
Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J. H. M., Johansson, A. V., Alfredsson, P. H. & Henningson, D. S. 2009 Turbulent boundary layers up to $R{e}_{\theta } = 2500$ studied through simulation and experiment. Phys. Fluids 21 (5), 051702.CrossRefGoogle Scholar
Schrader, L.-U., Brandt, L. & Zaki, T. A. 2011 Receptivity, instability and breakdown of Görtler flow. J. Fluid Mech. 682, 362396.CrossRefGoogle Scholar
Schubauer, G. B. & Klebanoff, P. S. 1955 Contributions on the mechanics of boundary-layer transition. NACA Tech. Rep. 1289.Google Scholar
Seifert, A. & Wygnanski, I. J. 1995 On turbulent spots in a laminar boundary layer subjected to a self-similar adverse pressure gradient. J. Fluid Mech. 296, 185209.CrossRefGoogle Scholar
Swearingen, J. D. & Blackwelder, R. F. 1987 The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255290.CrossRefGoogle Scholar
Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 605615.Google Scholar
Vaughan, N. J. & Zaki, T. A. 2011 Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks. J. Fluid Mech. 681, 116153.CrossRefGoogle Scholar
Volino, R. J., Schultz, M. P. & Pratt, C. M. 2003 Conditional sampling in a transitional boundary layer under high free stream turbulence conditions. J. Fluids Engng 125 (1), 2837.CrossRefGoogle Scholar
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54 (1), 3948.CrossRefGoogle Scholar
Willmarth, W. W. & Lu, S. S. 1972 Structure of the Reynolds stress near the wall. J. Fluid Mech. 55 (1), 6592.CrossRefGoogle Scholar
Wu, X. & Durbin, P. 2001 Evidence of longitudinal vortices evolved from distorted wakes in a turbine passage. J. Fluid Mech. 446, 199228.CrossRefGoogle Scholar
Wundrow, D. & Goldstien, M. 2001 Effect on a laminar boundary layer of small amplitude streamwise vorticity in the upstream flow. J. Fluid Mech. 426, 229262.CrossRefGoogle Scholar
Wygnanski, I., Sokolov, M. & Friedman, D. 1976 On a turbulent ‘spot’ in a laminar boundary layer. J. Fluid Mech. 78 (4), 785819.CrossRefGoogle Scholar
Zaki, T. A. & Durbin, P. A. 2005 Mode interaction and the bypass route to transition. J. Fluid Mech. 531, 85111.CrossRefGoogle Scholar
Zaki, T. A. & Durbin, P. A. 2006 Continuous mode transition and the effects of pressure gradient. J. Fluid Mech. 563, 357388.CrossRefGoogle Scholar
Zaki, T. A., Wissink, J. G., Durbin, P. A. & Rodi, W. 2009 Direct computations of boundary layers distorted by migrating wakes in compressor cascade. Flow Turbul. Combust. 83, 307322.CrossRefGoogle Scholar
Zaki, T. A., Wissink, J. G., Rodi, W. & Durbin, P. A. 2010 Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence. J. Fluid Mech. 665, 5798.CrossRefGoogle Scholar