Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T07:39:19.806Z Has data issue: false hasContentIssue false

Large-scale motion in a turbulent boundary layer: a study using temperature contamination

Published online by Cambridge University Press:  19 April 2006

Chyan-Hai P. Chen
Affiliation:
Department of Aerospace Engineering, University of Southern California, Los Angeles Present address: McDonnell Douglas Research Laboratories, St Louis, Missouri.
Ron F. Blackwelder
Affiliation:
Department of Aerospace Engineering, University of Southern California, Los Angeles

Abstract

A fully developed turbulent boundary layer with a zero pressure gradient was explored by using temperature as a passive contaminant in order to study the large-scale structure. The temperature tracer was introduced into the flow field by heating the entire wall to approximately 12°C above the free-stream temperature. The most interesting observation was the existence of a sharp internal temperature front, characterized by a rapid decrease in temperature, that extended throughout the entire boundary layer. In the outer, intermittent region, the internal temperature front was always associated with the upstream side of the turbulent bulges, i.e. the ‘backs’. It extended across the entire logarithmic region and was related to the sharp acceleration associated with the bursting phenomenon near the wall. Conditional averages of the velocities measured with the temperature front revealed that it was associated with an internal shear layer. The results suggest that this shear layer provides a dynamical relationship between the large structures in the outer, intermittent region and the bursting phenomenon near the wall.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A., Prabhu, A. & Stephenson, S. E. 1975 J. Fluid Mech. 72, 455.
Bilger, R. W., Antonia, R. A. & Sreenivasan, K. R. 1976 Phys. Fluids 19, 1471.
Blackwelder, R. F. 1977 Phys. Fluids Suppl. 20, S 232.
Blackwelder, R. F. 1979 To appear in Methods of Experimental Physics (ed R. Emrich). Academic Press.
Blackwelder, R. F. & Kaplan, R. E. 1976 J. Fluid Mech. 76, 89.
Blackwelder, R. F. & Kovasznay, L. S. G. 1972 Phys. Fluids 15, 1545.
Brown, G. & Roshko, A. 1974 J. Fluid Mech. 64, 775.
Chen, C. P. 1975 Ph.D. dissertation, University of Southern California.
Clauser, F. H. 1956 Adv. Appl. Mech. 4, 1.
Corino, E. R. & Brodkey, R. S. 1969 J. Fluid Mech. 37, 1.
Corrsin, S. 1943 N.A.C.A. Wartime Rep. W-94.
Corrsin, S. 1949 N.A.C.A. Tech. Note no. 1864.
Corrsin, S. 1957 Proc. 1st Naval Hydr. Symp. p. 373. Nat. Acad. Sci. Publ. SIS.
Corrsin, S. & Kistler, A. L. 1955 N.A.C.A. Rep. no. 1244.
Fulachier, L. 1972 D. Phys. Sci. thesis, Université de Provence.
Gupta, A. K. 1970 Ph.D. dissertation, University of Southern California.
Gupta, A. K., Laufer, J. & Kaplan, R. E. 1971 J. Fluid Mech. 50, 493.
Hedley, T. B. & Keffer, J. F. 1974a J. Fluid Mech. 64, 625.
Hedley, T. B. & Keffer, J. F. 1974b J. Fluid Mech. 64, 645.
Johnson, D. S. 1959 J. Appl. Mech. 26, 325.
Kaplan, R. E. & Laufer, J. 1969 Proc. 12th Int. Cong. Appl. Mech., Stanford Univ., p. 236. Springer.
Kibens, V., Kovasznay, L. S. G. & Oswald, L. 1974 Rev. Sci. Instrum. 45, 1138.
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 J. Fluid Mech. 50, 133.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Rundstadler, P. W. 1967 J. Fluid Mech. 30, 741.
Kovasznay, L. S. G. 1970 Ann. Rev. Fluid Mech. 2, 95.
Kovasznay, L. S. G. & Ali, S. F. 1974 Proc. 5th Int. Heat Transfer Conf., Tokyo, vol. 2, p. 99.
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 J. Fluid Mech. 41, 283.
Larue, J. C. & Libby, P. A. 1974 Phys. Fluids 17, 1956.
Laufer, J. 1975 Ann. Rev. Fluid Mech. 7, 307.
Laufer, J. & Badri narayanan, M. A. 1971 Phys. Fluids 14, 182.
Nychas, S. G., Hershey, H. C. & Brodkey, R. S. 1973 J. Fluid Mech. 61, 513.
Offen, G. R. & Kline, S. J. 1974 J. Fluid Mech. 62, 223.
Paizis, S. T. & Schwarz, W. H. 1974 J. Fluid Mech. 63, 315.
Paizis, S. T. & Schwarz, W. H. 1975 J. Fluid Mech. 68, 297.
Papailiou, D. D. & Lykoudis, P. S. 1974 J. Fluid Mech. 62, 11.
Rao, N. K., Narasimha, R. & Badri narayanan, M. A. 1971 J. Fluid Mech. 48, 339.
Rockwell, D. O. & Niccols, W. O. 1972 J. Basic Engng 94, 720.
Thomas, R. M. 1973 J. Fluid Mech. 57, 549.
Wallace, J. M., Brodkey, R. S. & Eckelmann, H. 1977 J. Fluid Mech. 83, 673.
Willmarth, W. W. 1975 Adv. Appl. Mech. 15, 159.
Winant, C. O. & Browand, F. K. 1974 J. Fluid Mech. 63, 237.
Zaric, Z. 1974 Etude statistique de la turbulence pariétale. Rep. Boris Kidric Inst., Belgrade.Google Scholar