No CrossRef data available.
Article contents
AB percolation on plane triangulations is unimodal
Published online by Cambridge University Press: 14 July 2016
Abstract
Let ℱ be a countable plane triangulation embedded in ℝ2 in such a way that no bounded region contains more than finitely many vertices, and let Pp be Bernoulli (p) product measure on the vertex set of ℱ. Let E be the event that a fixed vertex belongs to an infinite path whose vertices alternate states sequentially. It is shown that the AB percolation probability function θΑΒ (p) = Pp(E) is non-decreasing in p for 0 ≦ p ≦ ½. By symmetry, θ AΒ(p) is therefore unimodal on [0, 1]. This result partially verifies a conjecture due to Halley and stands in contrast to the examples of Łuczak and Wierman.
Keywords
MSC classification
- Type
- Research Papers
- Information
- Copyright
- Copyright © Applied Probability Trust 1994