Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-ngm8v Total loading time: 0.172 Render date: 2021-06-15T01:36:43.252Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Human factors–based risk analysis to improve the safety of doffing enhanced personal protective equipment

Published online by Cambridge University Press:  06 December 2018

Ayse P. Gurses
Affiliation:
Armstrong Institute Center for Health Care Human Factors, The Johns Hopkins University School of Medicine, Baltimore, Maryland Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
Aaron S. Dietz
Affiliation:
Armstrong Institute Center for Health Care Human Factors, The Johns Hopkins University School of Medicine, Baltimore, Maryland Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
Elaine Nowakowski
Affiliation:
Department of Hospital Epidemiology and Infection Control, Johns Hopkins Hospital, Baltimore, Maryland
Jennifer Andonian
Affiliation:
Department of Hospital Epidemiology and Infection Control, Johns Hopkins Hospital, Baltimore, Maryland
Maggie Schiffhauer
Affiliation:
Department of Hospital Epidemiology and Infection Control, Johns Hopkins Hospital, Baltimore, Maryland
Carrie Billman
Affiliation:
Department of Hospital Epidemiology and Infection Control, Johns Hopkins Hospital, Baltimore, Maryland
Anya M. Abashian
Affiliation:
Department of Hospital Epidemiology and Infection Control, Johns Hopkins Hospital, Baltimore, Maryland
Polly Trexler
Affiliation:
Department of Hospital Epidemiology and Infection Control, Johns Hopkins Hospital, Baltimore, Maryland
Patience Osei
Affiliation:
Armstrong Institute Center for Health Care Human Factors, The Johns Hopkins University School of Medicine, Baltimore, Maryland
Lauren E. Benishek
Affiliation:
Armstrong Institute Center for Health Care Human Factors, The Johns Hopkins University School of Medicine, Baltimore, Maryland Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
Anping Xie
Affiliation:
Armstrong Institute Center for Health Care Human Factors, The Johns Hopkins University School of Medicine, Baltimore, Maryland Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
Peter Pronovost
Affiliation:
Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
Michael A. Rosen
Affiliation:
Armstrong Institute Center for Health Care Human Factors, The Johns Hopkins University School of Medicine, Baltimore, Maryland Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
Lisa L. Maragakis
Affiliation:
Department of Hospital Epidemiology and Infection Control, Johns Hopkins Hospital, Baltimore, Maryland Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
for the CDC Prevention Epicenter Program
Affiliation:
Armstrong Institute Center for Health Care Human Factors, The Johns Hopkins University School of Medicine, Baltimore, Maryland Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland Department of Hospital Epidemiology and Infection Control, Johns Hopkins Hospital, Baltimore, Maryland Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
Corresponding
E-mail address:

Abstract

Objective

To systematically assess enhanced personal protective equipment (PPE) doffing safety risks.

Design

We employed a 3-part approach to this study: (1) hierarchical task analysis (HTA) of the PPE doffing process; (2) human factors-informed failure modes and effects analysis (FMEA); and (3) focus group sessions with a convenience sample of infection prevention (IP) subject matter experts.

Setting

A large academic US hospital with a regional Special Pathogens Treatment Center and enhanced PPE doffing protocol experience.

Participants

Eight IP experts.

Methods

The HTA was conducted jointly by 2 human-factors experts based on the Centers for Disease Control and Prevention PPE guidelines. The findings were used as a guide in 7 focus group sessions with IP experts to assess PPE doffing safety risks. For each HTA task step, IP experts identified failure mode(s), assigned priority risk scores, identified contributing factors and potential consequences, and identified potential risk mitigation strategies. Data were recorded in a tabular format during the sessions.

Results

Of 103 identified failure modes, the highest priority scores were associated with team members moving between clean and contaminated areas, glove removal, apron removal, and self-inspection while preparing to doff. Contributing factors related to the individual (eg, technical/ teamwork competency), task (eg, undetected PPE contamination), tools/technology (eg, PPE design characteristics), environment (eg, inadequate space), and organizational aspects (eg, training) were identified. Participants identified 86 types of risk mitigation strategies targeting the failure modes.

Conclusions

Despite detailed guidelines, our study revealed 103 enhanced PPE doffing failure modes. Analysis of the failure modes suggests potential mitigation strategies to decrease self-contamination risk during enhanced PPE doffing.

Type
Original Article
Copyright
© 2018 by The Society for Healthcare Epidemiology of America. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Cite this article: Gurses AP. (2019). Human factors–based risk analysis to improve the safety of doffing enhanced personal protective equipment. Infection Control & Hospital Epidemiology 2019, 40, 178–186. doi: 10.1017/ice.2018.292

References

1. 2014 Ebola outbreak in West Africa—case counts. Center for Disease Control and Prevention website. https://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/case-counts.html. Published 2016. Accessed October 25, 2018.Google Scholar
2. Health worker Ebola infections in Guinea, Liberia and Sierra Leone: a preliminary report. World Health Organization website. http://www.who.int/hrh/documents/21may2015_web_final.pdf. Published 2015. Accessed October 25, 2018.Google Scholar
3. Personal Protective Equipment (PPE). Centers for Disease Control and Prevention website. https://www.cdc.gov/vhf/ebola/healthcare-us/ppe/index.html. Published 2016. Accessed October 25, 2018.Google Scholar
4. Gurses, A, Seidl, K, Vaidya, V, et al. Systems ambiguity and guideline compliance: a qualitative study of how intensive care units follow evidence-based guidelines to reduce healthcare-associated infections. Qual Saf Health Care 2008;17:351359.CrossRefGoogle ScholarPubMed
5. Gurses, AP, Marsteller, JA, Ozok, AA, Xiao, Y, Owens, S, Pronovost, PJ. Using an interdisciplinary approach to identify factors that affect clinicians’ compliance with evidence-based guidelines. Crit Care Med 2010;38:S282S291.CrossRefGoogle ScholarPubMed
6. Definition and domains of ergonomics. International Ergonomics Association website. https://www.iea.cc/whats/. Published 2018. Accessed October 25, 2018.Google Scholar
7. Sanders, M, McCormick, E. Human error, accidents, and safety. Human Factors in Engineering and Design . Berkshire, UK: McGraw Hill; 1993.Google Scholar
8. Sax, H, Clack, L. Mental models: a basic concept for human factors design in infection prevention. J Hosp Infect 2015;89:335339.CrossRefGoogle ScholarPubMed
9. Anderson, J, Gosbee, LL, Bessesen, M, Williams, L. Using human factors engineering to improve the effectiveness of infection prevention and control. Crit Care Med 2010;38:S269S281.CrossRefGoogle ScholarPubMed
10. Yanke, E, Zellmer, C, Van Hoof, S, Moriarty, H, Carayon, P, Safdar, N. Understanding the current state of infection prevention to prevent Clostridium difficile infection: a human factors and systems engineering approach. Am J Infect Control 2015;43:241247.CrossRefGoogle ScholarPubMed
11. Yanke, E, Carayon, P, Safdar, N. Translating evidence into practice using a systems engineering framework for infection prevention. Infect Control Hosp Epidemiol 2014;35:11761182.CrossRefGoogle ScholarPubMed
12. Gurses, AP, Rosen, MA, Pronovost, PJ. Improving guideline compliance and healthcare safety using human factors engineering: the case of Ebola. J Patient Saf Risk Manag 2018;23(3):9395.CrossRefGoogle Scholar
13. DeRosier, J, Stalhandske, E, Bagian, JP, Nudell, T. Using health care failure mode and effect analysis: the VA National Center for Patient Safety’s prospective risk analysis system. Joint Commission J Qual Improv 2002;28:248267.CrossRefGoogle ScholarPubMed
14. Rosen, M, Sampson, J, Jackson, E Jr, et al. Failure mode and effects analysis of the universal anaesthesia machine in two tertiary care hospitals in Sierra Leone. Brit J Anaesth 2014;113:410415.CrossRefGoogle ScholarPubMed
15. Davis, S, Riley, W, Gurses, AP, Miller, K, Hansen, H. Failure modes and effects analysis based on in situ simulations: a methodology to improve understanding of risks and failures. In: Henriksen K, Battles JB, Keyes MA, Grady ML, editors. SourceAdvances in Patient Safety: New Directions and Alternative Approaches, vol. 3. Rockville, MD: Agency for Healthcare Research and Quality; 2008.Google Scholar
16. Wetterneck, TB, Skibinski, KA, Roberts, TL, et al. Using failure mode and effects analysis to plan implementation of smart iv pump technology. Am J Health System Pharm 2006;63:15281538.CrossRefGoogle Scholar
17. Wetterneck, TB, Hundt, AS, Carayon, P. FMEA team performance in health care: A qualitative analysis of team member perceptions. Journal of patient safety. 2009 Jun 1;5(2):102108.CrossRefGoogle Scholar
18. Faye, H, Rivera-Rodriguez, AJ, Karsh, B-T, Hundt, AS, Baker, C, Carayon, P. Involving intensive care unit nurses in a proactive risk assessment of the medication management process. Joint Comm J Qual Patient Saf 2010;36:376AP371.Google Scholar
19. Carayon, P, Hundt, AS, Karsh, B, et al. Work system design for patient safety: the SEIPS model. Qual Saf Health Care 2006;15 Suppl 1:i50i58.CrossRefGoogle ScholarPubMed
20. Keller, SC, Tamma, PD, Cosgrove, SE, et al. Ambulatory antibiotic stewardship through a human factors engineering approach: a systematic review. J Am Board Fam Med 2018;31:417430.CrossRefGoogle ScholarPubMed
21. Katz, MJ, Gurses, AP, Tamma, PD, Cosgrove, SE, Miller, MA, Jump, RL. Implementing antimicrobial stewardship in long-term care settings: an integrative review using a human factors approach. Clin Infect Dis 2017;65:19431951.CrossRefGoogle ScholarPubMed
22. Rock, C, Cosgrove, SE, Keller, SC, et al. Using a human factors engineering approach to improve patient room cleaning and disinfection. Infect Control Hosp Epidemiol 2016;37:15021506.CrossRefGoogle ScholarPubMed
23. Xie, A, Rock, C, Hsu, YJ, Osei, P, Andonian, J, Scheeler, V, Keller, SC, Cosgrove, SE, Gurses, AP. Improving Daily Patient Room Cleaning: An Observational Study Using a Human Factors and Systems Engineering Approach. IISE Transactions on Occupational Ergonomics and Human Factors. 2018 Sep;11:14.Google Scholar
24. Lane, R, Stanton, NA, Harrison, D. Applying hierarchical task analysis to medication administration errors. Appl Ergonom 2006;37:669679.CrossRefGoogle ScholarPubMed
25. Stanton, NA, Salmon, PM, Rafferty, LA, Walker, GH, Baber, C, Jenkins, DP. Human Factors Methods: A Practical Guide for Engineering and Design. Boca Raton, FL: CRC Press; 2017.Google Scholar
26. Doffing PPE: Prepare to Doff Your PPE. Center for Disease Control and Prevention website. https://www.cdc.gov/vhf/ebola/hcp/ppe-training/PAPRRespirator_Gown/doffing_01.html. Published 2014. Accessed October 25, 2018.Google Scholar
27. Department of Defense Patient Safety Center. Failure Mode and Effects Analysis (FMEA): An Advisor’s Guide. Silver Spring, MD: US DOD; 2004.Google Scholar
28. King, HB, Battles, J, Baker, DP, et al. TeamSTEPPS: team strategies and tools to enhance performance and patient safety. In: Henriksen K, Battles JB, Keyes MA, Grady ML, editors. SourceAdvances in Patient Safety: New Directions and Alternative Approaches, vol. 3. Rockville, MD: Agency for Healthcare Research and Quality; 2008.Google Scholar
29. Dietz, AS, Driskell, JE, Sierra, MJ, Weaver, SJ, Driskell, T, Salas, E. Teamwork under Stress. In: Salas E, Rico R, Passmore J (editors). The Wiley Blackwell Handbook of the Psychology of Team Working and Collaborative Processes. Hoboken, NJ: Wiley-Blackwell; 2017:297315.CrossRefGoogle Scholar
30. Driskell, JE, Salas, E. Stress and Human Performance. New York: Psychology Press; 2013.Google Scholar
31. Trinkoff, AM, Johantgen, M, Storr, CL, Gurses, AP, Liang, Y, Han, K. Nurses’ work schedule characteristics, nurse staffing, and patient mortality. Nurs Res 2011;60:18.CrossRefGoogle ScholarPubMed
32. Driskell, JE, Salas, E, Johnston, JH, Wollert, TN. Stress exposure training: an event-based approach. In: Szalma JL, Hancock PA (editors). Performance Under Stress. Hoboken, NJ: CRC Press; 2008:271286.Google Scholar
33. Smith, EM, Ford, JK, Kozlowski, S. Building adaptive expertise: implications for training design. In: Quiñones MA, Ehrenstein A (editors). Training for a Rapidly Changing Workplace: Applications of Psychological Research. Washington, DC: APA Books; 1997:89118.CrossRefGoogle Scholar
34. Keith, N, Frese, M. Effectiveness of error management training: a meta-analysis. Journal of Applied Psychology. 2008 Jan;93(1):59.CrossRefGoogle Scholar
35. Salas, E, DiazGranados, D, Klein, C, et al. Does team training improve team performance? A meta-analysis. Human Factors. 2008;50:903933.CrossRefGoogle ScholarPubMed
36. Hughes, AM, Gregory, ME, Joseph, DL, et al. Saving lives: a meta-analysis of team training in healthcare. J Appl Psychol 2016;101:12661304.CrossRefGoogle Scholar
37. Dietz, AS, Pronovost, PJ, Benson, KN, et al. A systematic review of behavioural marker systems in healthcare: What do we know about their attributes, validity and application? BMJ Qual Saf 2014;23:10311039.CrossRefGoogle ScholarPubMed
38. Rosen, MA, Dietz, AS. Team Performance Measurement. In: Salas E, Rico R, Passmore J (editors). The Wiley Blackwell Handbook of the Psychology of Team Working and Collaborative Processes. Hoboken, NJ: Wiley-Blackwell; 2017:479502.CrossRefGoogle Scholar
39. Guidance on personal protective equipment (PPE) to be used by healthcare workers during management of patients with confirmed Ebola or persons under investigation (PUIs) for Ebola who are clinically unstable or have bleeding, vomiting, or diarrhea in US hospitals, including procedures for donning and doffing PPE. Centers for Disease Control and Prevention website. https://www.cdc.gov/vhf/ebola/healthcare-us/ppe/guidance.html. Published 2015. Accessed October 25, 2018.Google Scholar
40. Picano, JJ, Williams, TJ, Roland, RR. Assessment and selection of high-risk operational personnel. In: Kennedy CH, Zillmer EA (editors). Military Psychology: Clinical and Operational Applications. New York: Guilford Press; 2006:353370.Google Scholar
Supplementary material: File

Gurses et al. supplementary material

Appendix 1

Download Gurses et al. supplementary material(File)
File 77 KB
Supplementary material: File

Gurses et al. supplementary material

Appendix 2

Download Gurses et al. supplementary material(File)
File 77 KB
Supplementary material: File

Gurses et al. supplementary material

Appendix 3

Download Gurses et al. supplementary material(File)
File 22 KB
17
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Human factors–based risk analysis to improve the safety of doffing enhanced personal protective equipment
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Human factors–based risk analysis to improve the safety of doffing enhanced personal protective equipment
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Human factors–based risk analysis to improve the safety of doffing enhanced personal protective equipment
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *