Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-14T01:32:13.428Z Has data issue: false hasContentIssue false

The petrogenetic significance of chemically related plutonic and volcanic rock units

Published online by Cambridge University Press:  01 May 2009

D. Wyborn
Affiliation:
Bureau of Mineral Resources, Canberra, Australia
B. W. Chappell
Affiliation:
Department of Geology, The Australian National University, Canberra, Australia

Abstract

Comagmatic granitic and volcanic rocks are divided into two types depending on whether or not the primary magma contains restite crystals. Examples of both of these types are discussed from the Lachlan Fold Belt of southeastern Australia.

Volcanic rocks containing restite phenocrysts are chemically identical to the associated plutonic rocks containing the same amount of restite. The more mafic granitic rocks correspond in composition to the most phenocryst-rich volcanics (up to 60% phenocrysts), and thus cannot be cumulate rocks produced by fractional crystallization, but must represent true magma compositions. These restite-bearing magmas result from partial melting in a source region up to the rheological critical melt percentage, which we estimate to be about 40% in the S-type Hawkins Suite of volcanics.

Melts which escape their restite at the source, before the critical melt percentage is reached, are able to undergo fractional crystallization in high level magma chambers by heterogeneous crystallization on chamber walls. In this case volcanic products from the top of the chamber are more felsic than the plutonic products, the plutonics are crystal cumulates and the volcanics are composed of the complementary fractionated liquid. Those phenocrysts present in the volcanics were probably eroded from the chamber walls and are less abundant (< 20%) than in the restite-retentive volcanic products.

Type
Articles
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. J. & Lindsley, D. H. 1985. New (and final!) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer. EOS 66, 416.Google Scholar
Arzi, A. A. 1978. Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44, 143–84.CrossRefGoogle Scholar
Atherton, M. P., Mccourt, W. J., Sanderson, L. M. & Taylor, W. P. 1979. The geochemical character of the segmented Peruvian Coastal Batholith and associated volcanics. In Origin of Granite Batholiths, Geochemical Evidence (eds. Atherton, M. P. & J., Tarney), pp. 4564. Orpington, U.K.: Shiva.CrossRefGoogle Scholar
Bagby, W. C., Cameron, K. L. & Cameron, M. 1981. Contrasting evolution of calc-alkalic volcanic and plutonic rocks of Western Chihuahua, Mexico. Journal of Geophysical Research 86, 10402–10.CrossRefGoogle Scholar
Bartlett, R. W. 1969. Magma convention, temperature distribution, and differentiation. American Journal of Science 267, 1067–82.CrossRefGoogle Scholar
Bickford, M. E., Sides, J. R. & Cullers, R. L. 1981. Chemical evolution of magmas in the Proterozoic terrane of the St Francois Mountains, Southeastern Missouri. 1. Field, petrographic, and major element data. Journal of Geophysical Research 86, 10365–86.CrossRefGoogle Scholar
Birch, W. D., Clemens, J. D. & Phillips, G. N. 1977. Devonian Acid Igneous Complexes in Central Victoria. 2nd Australian Geological Convention, Excursion Guide C, Geological Society of Australia, 29pp.Google Scholar
Bohlen, S. R., Wall, V. J., & Boettcher, A. L. 1983. Geobarometry in granulites. In Kinetics and Equilibrium in Mineral Reactions (ed. Saxena, S. K.), pp. 141–71. New York: Springer-Verlag.CrossRefGoogle Scholar
Branch, C. D. 1967. Genesis of magma for acid calcalkaline volcano-plutonic formations. Tectonophysics 4, 83100.CrossRefGoogle Scholar
Buddington, A. F. 1959. Granite emplacement with special reference to North America. Geological Society of America Bulletin 70, 671747.CrossRefGoogle Scholar
Cameron, K. L. 1984. Bishop Tuff revisited; new rare earth element date consistent with crystal fractionation. Science 224, 1338–40.CrossRefGoogle Scholar
Chappell, B. W. 1978. Granitoids from the Moonbi District, New England Batholith, eastern Australia. Geological Society of Australia Journal 25, 267–83.CrossRefGoogle Scholar
Chappell, B. W. 1984. Source rocks of I- and S-type granites in the Lachlan Fold Belt, southeastern Australia. Philosophical Transactions of the Royal Society of London A 130, 693707.Google Scholar
Chappell, B. W. & White, A. J. R. 1974. Two contrasting granite types. Pacific Geology 8, 173–4.Google Scholar
Chappell, B. W. & White, A. J. R. 1985. I- and S-type granites in the Lachlan Fold Belt, southeastern Australia. In Geology of Granites and their Metallogenic Relations (eds. Keqin, Xu & Tu, Guangchi), pp. 87101. Nanjing, China: Nanjing University.Google Scholar
Chappell, B. W., White, A. J. R. & Wyborn, D. (in press). The importance of residual source material (restite) in granite petrogenesis. Journal of Petrology.Google Scholar
Christiansen, E. H. 1983. The Bishop Tuff revisited; compositional zonation by double-diffusive fractional crystallization (DDFC). Geological Society of America, Abstracts with Programs 15, 390.Google Scholar
Clemens, J. D. & Wall, V. J. 1984. Origin and evolution of a peraluminous silicic ignimbrite suite: The Violet Town Volcanics. Contributions of Mineralogy and Petrology 88, 354–71.CrossRefGoogle Scholar
Ellis, D. J. 1980. Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica: P–T conditions of metamorphism, implications for garnet-cordierite equilibria and the evolution of the deep crust. Contributions to Mineralogy and Petrology 74, 201210.CrossRefGoogle Scholar
Etheridge, M. A., Rutland, R. W. R., & Wyborn, L. A. I. 1985. Tectonic process in the Early to Middle Proterozoic of Northern Australia. In Tectonics and Geochemistry of Early to Middle Proterozoic Fold Belts. Bureau of Mineral Resources, Record, 1985/28 (abstract).Google Scholar
Flood, R. H., Shaw, S. E. & Chappell, B. W. 1980. Mineralogical and chemical matching of plutonic and associated volcanic units, New England Batholith, Australia. Chemical Geology 29, 163–70.CrossRefGoogle Scholar
Hamilton, W. 1969. The volcanic Central Andes: A modern model for the Cretaceous batholiths and tectonics for North America. Bulletin of the Oregon State Department of Geology, Mineralogy and Industry 65, 175–84.Google Scholar
Harley, S. L. 1983. Regional geobarometry–geothermometry and metamorphic evolution of Enderby Land, Antarctica. In Antarctic Earth Science (eds Oliver, R. L. James, P. R. & Jago, J. B.), pp. 2530. Cambridge University Press.Google Scholar
Helz, R. T. 1976. Phase relations of basalts in their melting ranges at P H2O = 5 kb. Part II. Melt compositions. Journal of Petrology 17, 139–93.CrossRefGoogle Scholar
Higgins, N. C., Turner, N. J. & Black, L. P. 1986. The Petrogenesis of an I-type volcanic-plutonic suite: the St Marys Porphyrite, Tasmania. Contributions to Mineralogy and Petrology 92, 248–59.CrossRefGoogle Scholar
Hildreth, E. W. 1979. The Bishop Tuff: Evidence for the origin of compositional zonation in silicic magma chambers. Geological Society of America Special Paper no. 180, 4375.CrossRefGoogle Scholar
Hildreth, E. W. 1981. Gradients in silicic magma chambers: Implications for lithospheric magmatism. Journal of Geophysical Research 86, 10153–92.CrossRefGoogle Scholar
Hill, R. I., Silver, L. T., Chappell, B. W. & Taylor, H. P. 1985. Solidification and recharge of SiO2-rich plutonic magma chambers. Nature 313, 643–6.CrossRefGoogle Scholar
Hine, R., Williams, I. S., Chappell, B. W. & White, A. J. R. 1978. Contrasts between I- and S-type granitoids of the Kosciusko Batholith. Geological Society of Australia Journal 25, 219–34.CrossRefGoogle Scholar
Jacobson, R. R. E., Macleod, W. N. & Black, R. 1958. Ring Complexes in the Younger Granite Province of Northern Nigeria. Memoir no. 1, Geological Society of London. 72pp.Google Scholar
Jurewicz, S. R. & Watson, E. B. 1984. Distribution of partial melt in a felsic system: the importance of surface energy. Contributions to Mineralogy and Petrology 85, 25–9.CrossRefGoogle Scholar
Kretz, R. 1982. Transfer and exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data. Geochimica et Cosmochimica Acta 46, 411–21.CrossRefGoogle Scholar
Lindsley, D. H. 1983. Pyroxene thermometry. American Mineralogist 68, 477–93.Google Scholar
Luhr, J. F., Carmichael, I. S. E. & Varekamp, J. C. 1984. The 1982 eruptions of El Chinon Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices. Journal of Volcanology and Geothermal Research 23, 69108.CrossRefGoogle Scholar
Mcbirney, A. R. & Noyes, R. M. 1979. Crystallisation and layering of the Skaergaard Intrusion. Journal of Petrology 20, 487554.CrossRefGoogle Scholar
Mcbirney, A. R., Baker, B. H. & Nilson, R. H. 1985. Liquid fractionation. Part 1: Basic principles and experimental simulations. Journal of Volcanology and Geothermal Research 24, 124.CrossRefGoogle Scholar
Mcculloch, M. T. & Chappell, B. W. 1982. Nd isotopic characteristics of S- and I-type granites. Earth and Planetary Science Letters 58, 5164.CrossRefGoogle Scholar
Mcculloch, M. T., Chappell, B. W. & Hensel, H. D. 1982. Nd and Sr isotope relations in granitic rocks of the Tasman Fold Belt, eastern Australia. 5th International Conference on Geochronology, Cosmochronology and Isotope Geology, Abstracts, 246–7.Google Scholar
Mckenzie, D. 1985. The extraction of magma from the crust and mantle. Earth and Planetary Science Letters 74, 8191.CrossRefGoogle Scholar
Mahood, G. A. 1981. Chemical evolution of a Pleistocene rhyolitic center: Sierra La Primavera, Jalisco, Mexico. Contributions to Mineralogy and Petrology 77, 129–49.CrossRefGoogle Scholar
Michael, P. J. 1983. Chemical differentiation of the Bishop Tuff and other high-silica magmas through crystallisation processes. Geology 11, 31–4.2.0.CO;2>CrossRefGoogle Scholar
Munksgaard, N. C. 1985. A non magmatic origin for the compositionally zoned euhedral garnets in silicic Neogene volcanics from SE Spain. Neues Jahrbuch für Mineralogie, Monatshefte 1985 (2), 7382.Google Scholar
MýErs, J. S. 1975. Cauldron subsidence and fluidization: mechanisms of intrusion of the Coastal Batholith of Peru in to its own volcanic ejecta. Geological Society of America Bulletin 86, 1209–12.2.0.CO;2>CrossRefGoogle Scholar
O'Leary, W. J. & Whitney, J. A. 1981. Magmatic paragenesis of the Fish Canyon Ash-Flow Tuff, Central San Juan Mountains, Colorado. Geological Society of America Abstracts with Programs 13, 521.Google Scholar
Owen, M. & Wyborn, D. 1979. Geology and Geochemistry of the Tantangara and Brindabella 1: 100000 Sheet Areas. Bureau of Mineral Resources, Australia, Bulletin no. 204, 52pp.Google Scholar
Pattison, D. R. M., Carmichael, D. M. & ST-Onge, M. R. 1982. Geothermometry and geobarometry applied to early Proterozoic “S-Type” granitoid plutons, Wopmay Orogen, Northwest Territories, Canada. Contributions to Mineralogy and Petrology 79, 394404.CrossRefGoogle Scholar
Raguin, E. 1965. Geology of Granite (translated from the French Geologie du granite (1957) by Kranck, E. H. & Eakins, P. R.). New York: Interscience (Wiley).Google Scholar
Robinson, G. D., Klepper, M. R. & Obradovich, J. D. 1968. Overlapping plutonism, volcanism and tectonism in the Boulder Batholith region, Western Montana. Geological Society of America Memoir 116, 557–76.CrossRefGoogle Scholar
Rutherford, M. J., Sigurdsson, H., Carey, S. & Davis, A. 1985. The May 18, 1980, eruption of Mount St Helens. Melt composition and experimental phase equilibria. Journal of Geophysical Research 90, 2929–47.CrossRefGoogle Scholar
Shaw, H. R. 1965. Comments on viscosity, crystal settling, and convection in granitic magmas. American Journal of Science 263, 120–52.CrossRefGoogle Scholar
Smith, R. L. 1979. Ash flow magmatism. Geological Society of America Special Paper no. 180, 527.CrossRefGoogle Scholar
Smith, R. L. & Macdonald, R. 1979. Rhyolitic volcanism and its relationship to granitic plutonism. Geological Society of America Abstracts with Programs 11, 520.Google Scholar
Sparks, R. S. J., Huppert, H. E. & Turner, J. S. 1984. The fluid dynamics of evolving magma chambers. Philosophical Transactions of the Royal Society of London, A310, 511–34.Google Scholar
Sparks, R. S. J., Sigurdsson, H. & Wilson, L. 1977. Magma mixing: a mechanism for triggering acid explosive eruptions. Nature 267, 315–18.CrossRefGoogle Scholar
Spencer, K. J. & Lindsley, D. H. 1981. A solution model for coexisting iron-titanium oxides. American Mineralogist 66, 11891201.Google Scholar
Stormer, J. C. Jr, 1983. The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides. American Mineralogist 68, 586–94.Google Scholar
Stormer, J. C. Jr & Whitney, J. A. 1985. Two feldspar and iron-titanium oxide equilibria in silicic magmas and the depth of origin of large volume ash-flow tuffs. American Mineralogist 70, 5264.Google Scholar
Thorpe, R. S. & Francis, P. W. 1979. Petrogenetic relationships of volcanic and intrusive rocks of the Andes. In Origin of Granite Batholiths, Geochemical Evidence (eds. Atherton, M. P. Tarney, J.), pp. 6575. Orpington, U.K.: Shiva.CrossRefGoogle Scholar
Ugidos, J. M. 1985. Andalusite and cordierite in high grade metamorphic rocks and granites from the W sector of the Central Iberian Massif. Terra Cognita 5, 232.Google Scholar
Ustiyev, Y. K. 1963. Problems of volcanism and plutonism, volcano-plutonic formations. International Geological Review 7, 19942016.CrossRefGoogle Scholar
van Der Molen, I. & Patterson, M. S. 1979. Experimental deformation of partially-melted granite. Contributions to Mineralogy and Petrology 70, 299318.CrossRefGoogle Scholar
Vernon, R. N. 1983. Restite, xenoliths and mirogranitoid enclaves in granites. Journal and Proceedings of the Royal Society, New South Wales 116, 77103.Google Scholar
Wells, P. R. A. 1977. Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology 62, 129–39.CrossRefGoogle Scholar
White, A. J. R. & Chappell, B. W. 1977. Ultrametamorphism and granitoid genesis. Tectonophysics 43, 722.CrossRefGoogle Scholar
White, A. J. R. & Chappell, B. W. 1983. Granitoid types and their distribution in the Lachlan Fold Belt, Southeastern Australia. In Circum-Pacific Plutonic Terranes (ed. Roddick, J. C.), pp. 2134. Geological Society of America Memoir no. 159.CrossRefGoogle Scholar
Whitney, J. A. & Stormer, J. C. 1983. Igneous sulfides in the Fish Canyon Tuff and the role of sulfur in calc-alkaline magmas. Geology 11, 99102.2.0.CO;2>CrossRefGoogle Scholar
Whitney, J. A. & Stormer, J. C. 1985. Mineralogy, petrology, and magmatic conditions from the Fish Canyon Tuff, Central San Juan volcanic field, Colorado. Journal of Petrology 26, 726–62.CrossRefGoogle Scholar
Wood, B. J. & Banno, S. 1973. Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contributions to Mineralogy and Petrology 42, 109–24.CrossRefGoogle Scholar
Wyborn, D., Chappell, B. W. & Johnston, R. M. 1981. Three S-type volcanic suites from the Lachlan Fold Belt, Southeast Australia. Journal of Geophysical Research 86, 10335–48.CrossRefGoogle Scholar
Wyborn, D. & Owen, M. 1985. Araluen, New South Wales. Bureau of Mineral Resources, Australia, 1: 100000 geological map commentary.Google Scholar
Wyborn, D., Turner, B. S. & Chappell, B. W. (in press). The Boggy Plain Supersuite – a distinctive belt of I-type igneous rocks of potential economic significance in the Lachlan Fold Belt. Australian Journal of Earth Sciences.Google Scholar
Wyborn, L. A. I. & Page, R. W. 1983. The Proterozoic Kalkadoon and Ewen Batholiths, Mount Isa Inlier, Queensland: Source, chemistry, age and metamorphism. BMR Journal of Australian Geology and Geophysics 8, 5369.Google Scholar
Zeck, H P. 1970. An erupted migmatite from Cerro del Hoyazo, SE Spain, Contributions to Mineralogy and Petrology 26, 225–46.CrossRefGoogle Scholar