Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-18T14:15:22.754Z Has data issue: false hasContentIssue false

Mineral ages and zircon Hf isotopic composition of the Andong ultramafic complex: implications for the evolution of Mesozoic subduction system and subcontinental lithospheric mantle beneath SE Korea

Published online by Cambridge University Press:  18 October 2013

GI YOUNG JEONG
Affiliation:
Department of Earth and Environmental Sciences, Andong National University, Andong, Gyeongsangbukdo 760-749, Republic of Korea
CHANG-SIK CHEONG*
Affiliation:
Division of Earth and Environmental Sciences, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungcheongbukdo 363-883, Republic of Korea Graduate School of Analytical Science and Technology, Chungnam National University, 99 Daehangno, Yuseong, Daejeon 305-764, Republic of Korea
KEEWOOK YI
Affiliation:
Division of Earth and Environmental Sciences, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungcheongbukdo 363-883, Republic of Korea
JEONGMIN KIM
Affiliation:
Division of Earth and Environmental Sciences, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungcheongbukdo 363-883, Republic of Korea
NAMHOON KIM
Affiliation:
Division of Earth and Environmental Sciences, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungcheongbukdo 363-883, Republic of Korea
SEOK-KI KWON
Affiliation:
Geological Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Republic of Korea
JIAN-ZHEN GENG
Affiliation:
Tianjin Institute of Geology and Mineral Resources, Tianjin 300170, China
HUAI-KUN LI
Affiliation:
Tianjin Institute of Geology and Mineral Resources, Tianjin 300170, China
*
§Author for correspondence: ccs@kbsi.re.kr

Abstract

The Phanerozoic subduction system of the Korean peninsula is considered to have been activated by at least Middle Permian time. The geochemically arc-like Andong ultramafic complex (AUC) occurring along the border between the Precambrian Yeongnam massif and the Cretaceous Gyeongsang back-arc basin provides a rare opportunity for direct study of the pre-Cretaceous mantle wedge lying above the subduction zone. The tightly constrained SHRIMP U–Pb age of zircons extracted from orthopyroxenite specimens (222.1±1.0 Ma) is indistinguishable from the Ar/Ar age of coexisting phlogopite (220±6 Ma). These ages represent the timing of suprasubduction zone magmatism likely in response to the sinking of cold and dense oceanic lithosphere and the resultant extensional strain regime in a nascent arc environment. The nearly coeval occurrence of a syenite-gabbro-monzonite suite in the SW Yeongnam massif also suggests an extensional tectonic setting along the continental margin side during Late Triassic time. The relatively enriched ɛHf range of dated zircons (+6.2 to −0.6 at 222 Ma) is in contrast to previously reported primitive Sr–Nd–Hf isotopic features of Cenozoic mantle xenoliths from Korea and eastern China. This enrichment is not ascribed to contamination by the hypothetical Palaeozoic crust beneath SE Korea, but is instead attributable to metasomatism of the lithospheric mantle during the earlier subduction of the palaeo-Pacific plate. Most AUC zircons show a restricted core-to-rim spread of ɛHf values, but some grains testify to the operation of open-system processes during magmatic differentiation.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayers, J. C., Dittmer, S. K. & Layne, G. D. 1997. Partitioning of elements between peridotite and H2O at 2.0–3.0 GPa and 900–1100 °C, and application to models of subduction zone processes. Earth and Planetary Science Letters 150, 381–98.Google Scholar
Blichert-Toft, J. & Albarade, F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters 148, 243–56.Google Scholar
Brenan, J. M., Shaw, H. F., Ryerson, F. J. & Phinney, D. L. 1995. Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta 59, 3331–50.Google Scholar
Brown, D., Ryan, P. D., Afonso, J. C., Boutelier, D., Burg, J. P., Byrne, T., Calvert, A., Cook, F., Debart, S., Dewey, J. F., Gerya, T. V., Harris, R., Herrington, R., Konstantinovskaya, E., Reston, T. & Zagorevski, A. 2011. Arc-continent collision: the making of an orogen. In Arc-continent Collision (eds Brown, D. & Ryan, P. D.), pp. 477–93. Springer, Heidelberg, Frontiers in Earth Science Series.CrossRefGoogle Scholar
Casey, J. F. & Dewey, J. F. 1984. Initiation of subduction zones along transform and accreting plate boundaries, triple-junction evolution, and forearc spreading centres: implications for ophiolitic geology and obduction. In Ophiolites and Oceanic Lithosphere (eds Gass, I. G., Lippard, S. J. & Shelton, A. W.), pp. 269–90. Geological Society of London, Special Publication no. 13.Google Scholar
Cheong, C.-S. & Kim, N. 2012. Review of radiometric ages for Phanerozoic granitoids in southern Korean Peninsula. Journal of Petrological Society of Korea 21, 173–92 (in Korean with English abstract).Google Scholar
Cheong, C.-S., Kim, N., Kim, J., Yi, K., Jeong, Y.-J. & Cho, M. 2011. Permian to Triassic magmatism and metamorphism in Andong-Cheongsong-Yeongdeok area, southeastern Korea. Geological Society of Korea Annual Meeting (Abstract Volume), 4 (in Korean).Google Scholar
Cheong, C.-S., Kwon, S.-T. & Sagong, H. 2002. Geochemical and Sr-Nd-Pb isotopic investigation of Triassic granitoids and basement rocks in the northern Gyeongsang Basin, Korea: implications for the young basement in the East Asian continental margin. The Island Arc 11, 2544.CrossRefGoogle Scholar
Cheong, C.-S., Yi, K., Kim, N., Lee, T.-H., Lee, S. R., Geng, J.-Z. & Li, H.-K. 2013. Tracking source materials of Phanerozoic granitoids in South Korea by zircon Hf isotopes. Terra Nova 25, 228–35.Google Scholar
Cho, D.-L., Lee, S. R. & Armstrong, R. 2008. Termination of the Permo-Triassic Songrim (Indosinian) orogeny in the Ogcheon belt, South Korea: occurrence of ca. 220 Ma post-orogenic alkali granites and their tectonic implications. Lithos 105, 191200.CrossRefGoogle Scholar
Choi, P. Y., Lee, S. R., Choi, H.-I., Hwang, J.-H., Kwon, S.-K., Ko, I.-S. & An, G.-O. 2002. Movement history of the Andong Fault System: geometric and tectonic approaches. Geosciences Journal 6, 91102.Google Scholar
Choi, S. H. 2012. Lithospheric mantle beneath the Korean peninsula: implications from peridotite xenoliths in alkali basalts. Journal of Petrological Society of Korea 21, 235–47 (in Korean with English abstract).Google Scholar
Choi, S. H., Kwon, S.-T., Mukasa, S. B. & Sagong, H. 2005. Sr–Nd–Pb isotope and trace element systematics of mantle xenoliths from Late Cenozoic alkaline lavas, South Korea. Chemical Geology 221, 4064.Google Scholar
Choi, S. H. & Mukasa, S. B. 2012. Lu–Hf and Sm–Nd isotope systematics of Korean spinel peridotites: a case for metasomatically induced Nd–Hf decoupling. Lithos 154, 263–76.Google Scholar
Choi, T., Lee, Y. I. & Orihashi, Y. 2012. Mesozoic detrital zircon U-Pb ages of modern river sediments in Korea: implications for migration of arc magmatism in the Mesozoic East Asian continental margin. Terra Nova 24, 156–65.Google Scholar
Chough, S. K. & Sohn, Y. K. 2010. Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: new view. Earth Science Reviews 101, 225–49.CrossRefGoogle Scholar
Chu, N. C., Taylor, R. N., Chavagnac, V., Nesbitt, R. W., Boella, M. & Milton, J. A. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17, 1567–74.Google Scholar
Chu, Z.-Y., Wu, F.-Y., Walker, R. J., Rudnick, R. L., Pitcher, L., Puchtel, I. S., Yang, Y.-H. & Wilde, S. A. 2009. Temporal evolution of the lithospheric mantle beneath the eastern North China Craton. Journal of Petrology 50, 1857–98.Google Scholar
Defant, M. J. & Drummond, M. S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–5.Google Scholar
Drummond, M. S. & Defant, M. J. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons. Journal of Geophysical Research 95B, 21503–21.Google Scholar
Ellam, R. M. & Hawkesworth, C. J. 1988. Elemental and isotopic variations in subduction related basalts: evidence for a three component model. Contributions to Mineralogy and Petrology 98, 7280.Google Scholar
Ernst, W. G. 2005. Alpine and Pacific styles of Phanerozoic mountain building: subduction-zone petrogenesis of continental crust. Terra Nova 17, 165–88.Google Scholar
Foland, K. A. & Xu, Y. 1990. Diffusion of 40Ar and 39Ar in irradiated orthoclase. Geochimica et Cosmochimica Acta 54, 3147–58.Google Scholar
Gerdes, A. & Zeh, A. 2006. Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters 249, 4761.Google Scholar
Griffin, W. L., Pearson, N. J., Belousova, E. A., Jackson, S. E., O'Reilly, S. Y., Van Achterberg, E. & Shee, S. R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–47.Google Scholar
Hawkins, J. W., Bloomer, S. H., Evans, C. A. & Melchior, J. T. 1984. Evolution of intra-oceanic arc-trench systems. Tectonophysics 102, 175205.Google Scholar
Iizuka, T. & Hirata, T. 2005. Improvements of precision and accuracy in in-situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chemical Geology 220, 121–37.Google Scholar
Jarrard, R. D. 1986. Relations among subduction parameters. Reviews of Geophysics 24, 217–83.Google Scholar
Jeong, G. Y., Lee, S. R. & Kwon, S.-K. 2012. Phlogopite-bearing orthopyroxenite in Andong ultramafic complex. Journal of Mineralogical Society of Korea 25, 249–61 (in Korean with English abstract).Google Scholar
Kee, W.-S., Kim, S. W., Jeong, Y.-J. & Kwon, S. 2010. Characteristics of Jurassic continental arc magmatism in South Korea: tectonic implications. The Journal of Geology 118, 305–23.Google Scholar
Kelley, S. P. & Wartho, J.-A. 2000. Rapid kimberlite ascent and the significance of Ar-Ar ages in xenolith phlogopites. Science 289, 609–11.Google Scholar
Kim, C.-B. & Turek, A. 1996. Advances in U-Pb zircon geochronology of Mesozoic plutonism in the southwestern part of Ryeongnam massif, Korea. Geochemical Journal 30, 323–38.Google Scholar
Kim, H. S., Ree, J.-H. & Kim, J. 2012. Tectonometamorphic evolution of the Permo-Triassic Songrim (Indosinian) orogeny: evidence from the late Paleozoic Pyeongan Supergroup in the northeastern Taebaeksan Basin, South Korea. International Journal of Earth Sciences 101, 483–98.Google Scholar
Kim, J., Yi, K., Jeong, Y.-J. & Cheong, C.-S. 2011 a. Geochronological and geochemical constraints on the petrogenesis of Mesozoic high-K granitoids in the central Korean peninsula. Gondwana Research 20, 608–20.CrossRefGoogle Scholar
Kim, S. W., Kwon, S., Koh, H. J., Yi, K., Jeong, Y.-J. & Santosh, M. 2011 b. Geotectonic framework of Permo-Triassic magmatism within the Korean Peninsula. Gondwana Research 20, 865–89.Google Scholar
Lee, S. R. & Cho, K. 2012. Precambrian crustal evolution of the Korean peninsula. Journal of Petrological Society of Korea 21, 89112 (in Korean with English abstract).Google Scholar
Leitch, E. C. 1984. Island arc elements and arc-related ophiolites. Tectonophysics 106, 177203.Google Scholar
Li, Z.-X. & Li, X.-H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology 35, 179–82.CrossRefGoogle Scholar
Li, Z.-X., Li, X.-H., Chung, S.-L., Lo, C.-H., Xu, X. & Li, W.-X. 2012. Magmatic switch-on and switch-off along the South China continental margin since the Permian: transition from an Andean-type to a Western pacific-type plate boundary. Tectonophysics 532–5, 271–90.Google Scholar
Ludwig, K. R. 2008. User's Manual for Isoplot 3.6: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication.Google Scholar
Ludwig, K. R. 2009. User's Manual for SQUID 2. Berkeley: Berkeley Geochronology Center Special Publication.Google Scholar
Martin, H. 1986. Effect of steeper Archaean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14, 753–6.Google Scholar
Martin, H. 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46, 411–29.Google Scholar
Martin, H., Smithies, R. H., Rapp, R., Moyen, J.-F. & Champion, D. 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 124.Google Scholar
Miyashiro, A. 1973. The Troodos ophiolitic complex was probably formed in an island arc. Earth and Planetary Science Letters 19, 218–24.Google Scholar
Paces, J. B. & Miller, J. D. Jr. 1993. Precise U–Pb ages of duluth complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research: Solid Earth 98, 13997–4013.CrossRefGoogle Scholar
Park, K.-H. 2010. Evolution of the subcontinental lithospheric mantle of Korean peninsula: partial loss and its timing. Journal of Petrological Society of Korea 19, 199208 (in Korean with English abstract).Google Scholar
Park, K.-H., Kim, D.-Y., Song, Y.-S. & Cheong, C.-S. 2006. Rb-Sr isotopic composition of Mesozoic Sancheong syenite and its geologic implication. Journal of Petrological Society of Korea 15, 19 (in Korean with English abstract).Google Scholar
Park, K.-H., Lee, H.-S. & Cheong, C.-S. 2005. Sphene U-Pb ages of the granodiorites from Gimcheon, Seongju and Anui areas of the middle Yeongnam massif. Journal of Petrological Society of Korea 14, 111 (in Korean with English abstract).Google Scholar
Patchett, P. J., Kouvo, O., Hedge, C. E. & Tatsumoto, M. 1981. Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contributions to Mineralogy and Petrology 78, 279–97.Google Scholar
Peacock, S. M., Rushmer, T. & Thompson, A. B. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters 121, 227–44.Google Scholar
Pearce, J. A. 1982. Trace element characteristics of lavas from destructive plate boundaries. In Andesites (eds Thorpe, J. S.), pp. 525–48. New York: John Wiley.Google Scholar
Pearce, J. A., Lippard, S. J. & Roberts, S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In Marginal Basin Geology: Volcanic and Associated Sedimentary and Tectonic Processes in Modern and Ancient Marginal Basins (eds Kokelaar, B. P. & Howells, M. F.), pp. 7494. Geological Society of London, Special Publication no. 16.Google Scholar
Pearce, J. A. & Peate, D. W. 1995. Tectonic implications of the composition of volcanic arc lavas. Annual Review of Earth and Planetary Science 23, 251–85.Google Scholar
Reiners, P. W. & Brandon, M. T. 2006. Using thermochronology to understand orogenic erosion. Annual Reviews of Earth and Planetary Science 34, 219–66.Google Scholar
Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D., Owens, T. L. & Depaolo, D. J. 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology 145, 117–52.Google Scholar
Sagong, H., Kwon, S.-T. & Ree, J.-H. 2005. Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics 24, TC5002, published online 13 September 2005, doi:10.1029/2004TC001720.Google Scholar
Scherer, E., Münker, C. & Mezger, K. 2001. Calibration of the lutetium-hafnium clock. Science 293, 683–7.Google Scholar
Shervais, J. W. 2001. Birth, death, and resurrection: the life cycle of suprasubduction zone ophiolites. Geochemistry, Geophysics, Geosystems 2, published online 31 January 2011, doi:10.1029/2000GC000080.Google Scholar
Stern, R. J. & Bloomer, S. H. 1992. Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geological Society of America Bulletin 104, 1621–36.Google Scholar
Tatsumi, Y., Hamilton, D. L. & Nesbitt, R. W. 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high-pressure experiments and natural rocks. Journal of Volcanology and Geothermal Research 29, 293309.Google Scholar
Tetley, N., McDougall, I. & Heydegger, H. R. 1980. Thermal neutron interference in the 40Ar/39Ar dating technique. Journal of Geophysical Research 85, 7201–5.Google Scholar
Uyeda, S. & Kanamori, H. 1979. Back-arc opening and the mode of subduction. Journal of Geophysical Research 84, 1049–61.Google Scholar
Vervoort, J. D., Patchett, P. J., Söderlund, U. & Baker, M. 2004. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochemistry, Geophysics, Geosystems 5, published online 2 November 2002, doi: 10.1029/2004GC000721.Google Scholar
Whattam, S. A., Cho, M. & Smith, E. M. 2011. Magmatic peridotites and pyroxenites, Andong Ultramafic Complex, Korea: geochemical evidence for supra-subduction zone formation and extensive melt–rock interaction. Lithos 127, 599618.CrossRefGoogle Scholar
Williams, I. S. 1998. U–Th–Pb geochronology by ion microprobe. In Applications of Microanalytical Techniques to Understanding Mineralizing Processes (eds McKibben, M. A., Shanks, W. G. III & Ridley, W. I.), pp. 135. Society of Economic Geologists, Littleton, Colorado, Reviews in Economic Geology 7.Google Scholar
Williams, I. S., Cho, D.-L. & Kim, S. W. 2009. Geochronology, and geochemical and Nd–Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: constraints on Triassic post-collisional magmatism. Lithos 107, 239–56.Google Scholar
Woodhead, J. D. & Hergt, J. M. 2005. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research 29, 183–95.Google Scholar
Yi, K., Cheong, C.-S., Kim, J., Kim, N., Jeong, Y.-J. & Cho, M. 2012. Late Paleozoic to Early Mesozoic arc-related magmatism in southeastern Korea: SHRIMP zircon geochronology and geochemistry. Lithos 153, 129–41.Google Scholar