Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T03:03:26.308Z Has data issue: false hasContentIssue false

Spatially resolving the atmospheric dynamics over the surface of red supergiants with the Very Large Telescope Interferometer

Published online by Cambridge University Press:  23 May 2013

K. Ohnaka*
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
Get access

Abstract

The mass-loss mechanism in red supergiants is a long-stand-ing problem. The milliarcsecond angular resolution achieved by infrared long-baseline interferometry provides us with the only way to spatially resolve the region where the material is accelerated. For this goal, the 2.3 μm CO lines are important, because they form in the upper photosphere and the outer atmosphere (so-called MOLsphere). We present high-spatial and high-spectral resolution observations of the 2.3 μm CO lines in the red supergiants Betelgeuse and Antares using the Very Large Telescope Interferometer (VLTI). This has enabled us to spatially resolve the gas dynamics in the photosphere (and the MOLsphere) for the first time other than the Sun. We have detected vigorous motions of large CO gas clumps with velocities of up to 20–30 km s-1. Comparison of the CO line data taken 1 year apart shows a significant change in the dynamics of the atmosphere. In contrast to the CO line data, the continuum data reveal no or only marginal time variations. The observationally estimated gas density in the outer atmosphere at 1.3–1.4 R is higher than the values predicted by the current 3-D convection simulations by 6 to 11 orders of magnitude. Therefore, at the moment, convection alone cannot explain the detected vigorous gas motions in the extended outer atmosphere of Betelgeuse and Antares.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chiavassa, A., Plez, B., Josselin, E., & Freytag, B., 2009, A&A, 506, 1351
Chiavassa, A., Freytag, B., Masseron, T., & Plez, B., 2011, A&A, 535, A22
Gilliland, R.L., & Dupree, A.K., 1996, ApJ, 463, L29 CrossRef
Harper, G.M., & Brown, A., 2001, ApJ, 551, 1073 CrossRef
Harper, G.M., & Brown, A., 2006, ApJ, 646, 1179 CrossRef
Harper, G.M., Richter, M.J., Ryde, N., et al., 2009, ApJ, 701, 1464 CrossRef
Hestroffer, D., 1997, A&A, 327, 199
Lim, J., Carilli, C., White, S.M., Beasley, A.J., & Marson, R.G., 1998, Nature, 392, 575 CrossRef
Lobel, A., & Dupree, A.K., 2001, ApJ, 558, 815 CrossRef
Ohnaka, K., 2004, A&A, 421, 1149
Ohnaka, K., Hofmann, K.-H., Benisty, M., et al., 2009, A&A, 503, 183
Ohnaka, K., Weigelt, G., Millour, F., et al., 2011, A&A, 529, A163
Ohnaka, K., Hofmann, K.-H., Schertl, D., et al., 2013, A&A, submitted
Perrin, G., Ridgway, S.T., Coudé du Foresto, V., et al., 2004, A&A, 418, 675
Smartt, S.J., Eldridge, J.J., Crockett, R.M., & Maund, J.R., 2009, MNRAS, 395 1409 CrossRef
Thiébaut, E., 2008, SPIE Proceedings, 7013, 70131I CrossRef
Tsuji, T., 2000a, ApJ, 538, 801 CrossRef
Tsuji, T., 2000b, ApJ, 540, L99 CrossRef
Tsuji, T., 2006, ApJ, 645, 1448 CrossRef
Walmswell, J.J., & Eldridge, J.J., 2012, MNRAS, 419, 2054 CrossRef
Yoon, S.-C., & Cantiello, M., 2010, ApJ, 717, L62 CrossRef