Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T06:04:55.144Z Has data issue: false hasContentIssue false

Interaction of atomic hydrogen with carbon grains

Published online by Cambridge University Press:  30 March 2011

V. Mennella*
Affiliation:
INAF-Osservatorio Astronomico di Capodimonte, Napoli, Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Laboratory studies on the interaction of atomic hydrogen with aliphatic and aromatic hydrogenated carbon grains are discussed. When exposed to atomic hydrogen, both types of hydrogenated carbon grains act as catalysts for molecular hydrogen formation. In the first case, an exchange reaction with hydrogen chemisorbed in aliphatic carbon sites is the formation route to H2 formation. For aromatic carbon grains, the formation of molecular hydrogen takes place through a two-step reaction sequence: 1) super hydrogenation of the aromatic carbon islands of grains 2) exchange reactions on these islands. This mechanism represents a good approximation of molecular hydrogen formation on large neutral PAHs.

Type
Research Article
Copyright
© EAS, EDP Sciences 2011

References

Bauschlicher, C.W. Jr., 1998, ApJ, 509, L125 CrossRef
Cassam-Chenaï, P., Pauzat, F., & Ellinger, Y., 1994, Molec. Grains Space, 312, 543
Cazaux, S., & Tielens, A.G.G.M., 2004, ApJ, 604, 222 CrossRef
Colangeli, L., Mennella, V., Palumbo, P., Rotundi, A., & Bussoletti, E., 1995, A&AS, 113, 561
Habart, E., Boulanger, F., Verstraete, L., Walmsley, C.M., & Pineau des Forêts, G., 2004, A&A, 414, 531
Herbst, E., Chang, Q., & Cuppen, H.M., 2005, J. Phys. Conf. Ser., 6, 18 CrossRef
Hornekær, L., Baurichter, A., Petrunin, V.V., Field, D., & Luntz, A.C., 2003, Science, 302, 1943 CrossRef
Le Page, V., Keheyan, Y., Bierbaum, V.M., & Snow, T.P., 1997, J. Am. Chem. Soc., 119, 8373 CrossRef
Manicò, G., Ragunì, G., Pirronello, V., Roser, J.E., & Vidali, G., 2001, ApJ, 548, L253 CrossRef
Mennella, V., 2010, ApJ, 718, 867 CrossRef
Mennella, V., 2008a, ApJ, 682, L101 CrossRef
Mennella, V., 2008b, ApJ, 684, L25 CrossRef
Mennella, V., Baratta, G.A., Esposito, A., Ferini, G., & Pendleton, Y.J., 2003, ApJ, 587, 727 CrossRef
Mennella, V., Brucato, J.R., Colangeli, L., & Palumbo, P., 2002, ApJ, 569, 531 CrossRef
Mennella, V., Muñoz Caro, G., Ruiterkam, R., et al., 2001, A&A, 367, 355
Perets, H.B., Biham, O., Manicó, G., et al., 2005, ApJ, 627, 850 CrossRef
Petrie, S., Javahery, G., & Bohme, D.K., 1992, J. Am. Chem. Soc., 114, 9205 CrossRef
Pirronello, V., Biham, O., Liu, C., Shen, L., & Vidali, G., 1997, ApJ, 483, L131 CrossRef
Pirronello, V., Liu, C., Roser, J.E., & Vidali, G., 1999, A&A, 344, 681
Rauls, E., & Hornekær, L., 2008, ApJ, 679, 531 CrossRef
Scott, G.B., Fairley, D.A., Freeman, C.G., et al., 1997, J. Phys. Chem. A, 101, 4973 CrossRef
Snow, T.P., Le Page, V., Keheyan, Y., & Bierbaum, V.M., 1998, Nature, 391, 259 CrossRef
Williams, D.A., 2005, J. Phys. Conf. Ser., 6, 1 CrossRef