Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-01T21:11:40.520Z Has data issue: false hasContentIssue false

Hoeffding spaces and Specht modules

Published online by Cambridge University Press:  15 October 2010

Giovanni Peccati
Affiliation:
Équipe , Université Paris Ouest-Nanterre La Dé fense, 200 avenue de la République, 92000 Nanterre, France. giovanni.peccati@gmail.com
Jean-Renaud Pycke
Affiliation:
Département de Mathématiques, Université d'Évry, Évry, France; jrpycke@maths.univ-evry.fr
Get access

Abstract

It is proved that each Hoeffding space associated with a random permutation(or, equivalently, with extractions without replacement from a finitepopulation) carries an irreducible representation of the symmetric group,equivalent to a two-block Specht module.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D.J. Aldous, Exchangeability and related topics. École d'été de Probabilités de Saint-Flour XIII. LNM 1117, Springer, New York (1983).
Bloznelis, M., Orthogonal decomposition of symmetric functions defined on random permutations. Combin. Probab. Comput. 14 (2005) 249268. CrossRef
Bloznelis, M. and Götze, F., Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics. Ann. Stat. 29 (2001) 353365.
Bloznelis, M. and Götze, F., Edgeworth, An expansion for finite population statistics. Ann. Probab. 30 (2002) 12381265.
P. Diaconis, Group Representations in Probability and Statistics. IMS Lecture Notes – Monograph Series 11, Hayward, California (1988).
J.J. Duistermaat and J.A.C. Kolk, Lie groups. Springer-Verlag, Berlin-Heidelberg-New York (1997).
El-Dakkak, O. and Peccati, G., Hoeffding decompositions and urn sequences. Ann. Probab. 36 (2008) 22802310. CrossRef
G.D. James, The representation theory of the symmetric groups. Lecture Notes in Math. 682, Springer-Verlag, Berlin-Heidelberg-New York (1978).
Peccati, G., Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations. Ann. Probab. 32 (2004) 17961829. CrossRef
Peccati, G. and Pycke, J.-R., Decompositions of stochastic processes based on irreducible group representations. Theory Probab. Appl. 54 (2010) 217245. CrossRef
B.E. Sagan, The Symmetric Group. Representations, Combinatorial Algorithms and Symmetric Functions, 2nd edition. Springer, New York (2001).
R.J. Serfling, Approximation Theorems of Mathematical Statistics. Wiley, New York (1980).
J.-P. Serre, Linear representations of finite groups, Graduate Texts Math. 42, Springer, New York (1977).
Zhao, L. and Chen, X., Normal approximation for finite-population U-statistics. Acta Math. Appl. Sinica 6 (1990) 263272. CrossRef