Article contents
Cohomology-free diffeomorphisms of low-dimension tori
Published online by Cambridge University Press: 01 August 1998
Abstract
We study cohomology-free (c.f.) diffeomorphisms of the torus $T^n$. A diffeomorphism is c.f. if every smooth function $f$ on $T^n$ is cohomologous to a constant $f_0$, i.e. there exists a $C^{\infty}$ function $h$ so that $h-h\circ\varphi=f-f_0$. We show that the only c.f. diffeomorphisms of $T^n$, $1\le n\le3$, are the smooth conjugations of Diophantine translations. For $n=4$, we prove the same result for c.f. orientation-preserving diffeomorphisms.
- Type
- Research Article
- Information
- Copyright
- © 1998 Cambridge University Press
- 2
- Cited by