Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T08:44:24.980Z Has data issue: false hasContentIssue false

Development of a Mobile Laboratory for Sudden Onset Disasters

Published online by Cambridge University Press:  21 April 2020

Ian Marr*
Affiliation:
National Critical Care and Trauma Response Centre, Darwin, Australia
Joshua R. Francis
Affiliation:
Department of Paediatrics, Royal Darwin Hospital, Darwin, Northern Territory, Australia Menzies School of Health Research, Darwin, Northern Territory, Australia
Dianne P. Stephens
Affiliation:
National Critical Care and Trauma Response Centre, Darwin, Australia Menzies School of Health Research, Darwin, Northern Territory, Australia
Kristy Marshall
Affiliation:
Territory Pathology, Northern Territory, Darwin, Australia
David J. Read
Affiliation:
National Critical Care and Trauma Response Centre, Darwin, Australia
Rob W. Baird
Affiliation:
Territory Pathology, Northern Territory, Darwin, Australia
Nicholas Coatsworth
Affiliation:
Infectious Disease Department, Canberra Hospital, ACT, Australia
*
Correspondence and reprint requests to Dr Ian Marr, c/o Menzies School of Health Research, Darwin, Northern Territory, 0810, Australia (e-mail: Ian_Marr@gmx.com).

Abstract

Objectives:

Clinical diagnostics in sudden onset disasters have historically been limited. We set out to design, implement, and evaluate a mobile diagnostic laboratory accompanying a type 2 emergency medical team (EMT) field hospital.

Methods:

Available diagnostic platforms were reviewed and selected against in field need. Platforms included HemoCue301/WBC DIFF, i-STAT, BIOFIRE FILMARRAY multiplex rt-PCR, Olympus BX53 microscopy, ABO/Rh grouping, and specific rapid diagnostic tests. This equipment was trialed in Katherine, Australia, and Dili, Timor-Leste.

Results:

During the initial deployment, an evaluation of FilmArray tests was successful using blood culture identification, gastrointestinal, and respiratory panels. HemoCue301 (n = 20) hemoglobin values were compared on Sysmex XN 550 (r = 0.94). HemoCue WBC DIFF had some variation, dependent on the cell, when compared with Sysmex XN 550 (r = 0.88-0.16). i-STAT showed nonsignificant differences against Vitros 250. Further evaluation of FilmArray in Dili, Timor-Leste, diagnosed 117 pathogens on 168 FilmArray pouches, including 25 separate organisms on blood culture and 4 separate cerebrospinal fluid pathogens.

Conclusion:

This mobile laboratory represents a major advance in sudden onset disaster. Setup of the service was quick (< 24 hr) and transport to site rapid. Future deployment in fragmented health systems after sudden onset disasters with EMT2 will now allow broader diagnostic capability.

Type
Original Research
Copyright
Copyright © 2020 Society for Disaster Medicine and Public Health, Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ESCAP. Overview of natural disasters and their impacts in Asia and the Pacific, 1970-2014. ESCAP Tech Pap. 2015;1:1-30. http://www.unescap.org/sites/default/files/Technical%20paper-Overview%20of%20natural%20hazards%20and%20their%20impacts_final.pdf.Google Scholar
Watson, JT, Gayer, M, Connolly, MA. Epidemics after natural disasters. Emerg Infect Dis. 2007;13:1-5. doi:10.3201/eid1301.060779.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. Increase in reported coccidioidomycosis -- United States, 1998-2011. Morb Mortal Wkly Rep. 2013;62(12):217-221.Google Scholar
ReliefWeb. Haiti: Chikungunya outbreak July 2014. 2014. https://reliefweb.int/disaster/ep-2014-000082-hti. Accessed September 26, 2018.Google Scholar
Sáenz, R, Bissell, RA, Paniagua, F. Post-disaster malaria in Costa Rica. Prehosp Disaster Med. 1995;10:154-160. doi:10.1017/S1049023X00041935.CrossRefGoogle ScholarPubMed
Ortiz, RM, Le, NK, Sharma, V, et al. Post-earthquake Zika virus surge: disaster and public health threat amid climatic conduciveness. Sci Rep. 2017;7(1):1-10. doi:10.1038/s41598-017-15706-w.Google Scholar
Uçkay, I, Sax, H, Harbarth, S, et al. Multi-resistant infections in repatriated patients after natural disasters: lessons learned from the 2004 tsunami for hospital infection control. J Hosp Infect. 2008;68:1-8. doi:10.1016/j.jhin.2007.10.018.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. Two cases of toxigenic Vibrio cholerae O1 infection after Hurricanes Katrina and Rita – Louisiana, October 2005. Morb Mortal Wkly Rep. 2006;55:31-32.Google Scholar
Yee, EL, Palacio, H, Atmar, RL, et al. Widespread outbreak of norovirus gastroenteritis among evacuees of Hurricane Katrina residing in a large ‘megashelter’ in Houston, Texas: lessons learned for prevention. Clin Infect Dis. 2007;44:1032-1039. doi:10.1086/512195.CrossRefGoogle Scholar
Green, JP, Karras, DJ. Update on emerging infections: news from the Centers for Disease Control and Prevention. Notes from the field: fatal fungal soft-tissue infections after a tornado – Joplin, Missouri, 2011. Ann Emerg Med. 2012;59:53-55. doi:10.1016/j.annemergmed.2011.10.004.Google Scholar
Ko, AI, Reis, MG, Dourado, CMR, Johnson, WD, Riley, LW. Urban epidemic of severe leptospirosis in Brazil. Lancet. 1999;354:820-825. doi:10.1016/S0140-6736(99)80012-9.CrossRefGoogle ScholarPubMed
Ahern, M, Kovats, RS, Wilkinson, P, et al. Global health impacts of floods: epidemiologic evidence. Epidemiol Rev. 2005;27:36-46. doi:10.1093/epirev/mxi004.CrossRefGoogle ScholarPubMed
Campanella, N. Infectious diseases and natural disasters: the effects of Hurricane Mitch over Villanueva municipal area, Nicaragua. Public Health Rev. 1999;27:311-319.Google ScholarPubMed
Bechah, Y, Capo, C, Mege, JL, Raoult, D. Epidemic typhus. Lancet Infect Dis. 2008;8:417-426. doi:10.1016/S1473-3099(08)70150-6.CrossRefGoogle ScholarPubMed
Gaspar, M, Leite, F, Brumana, L, et al. Epidemiology of meningococcal meningitis in Angola, 1994-2000. Epidemiol Infect. 2001;127:421-424. doi:10.1017/S0950268801006318.CrossRefGoogle Scholar
World Health Organization. Acute jaundice syndrome. Morb Mortal Wkly Rep. 2006;23:1-14.Google Scholar
Sur, D, Dutta, P, Nair, GB, Bhattacharya, SK. Severe cholera outbreak following floods in a northern district of West Bengal. Indian J Med Res. 2000;112:178-182.Google Scholar
Afshar, M, Raju, M, Ansell, D, Bleck, TP. Narrative review: tetanus – a health threat after natural disasters in developing countries. Ann Intern Med. 2011;154:329-336. doi:10.1059/0003-4819-154-5-201103010-00007.CrossRefGoogle ScholarPubMed
Vollaard, AM, Ali, S, van Asten, HAGH, et al. Risk factors for typhoid and paratyphoid fever in Jakarta, Indonesia. JAMA. 2004;291:2607-2615. doi:10.1001/jama.291.21.2607.CrossRefGoogle ScholarPubMed
Katsumata, T, Hosea, D, Wasito, EB, et al. Cryptosporidiosis in Indonesia: a hospital-based study and a community-based survey. Am J Trop Med Hyg. 1998;59:628-632.10.4269/ajtmh.1998.59.628CrossRefGoogle Scholar
Heath, C, Orrell, C, Lee, R, et al. A review of the Royal Perth Hospital Bali experience: an infection control perspective. Aust Infect Control. 2003;8(2):42-54.10.1071/HI03043CrossRefGoogle Scholar
Italiano, CM, Speers, DJ, Chidlow, GR, et al. Hepatitis B outbreak following a mass-casualty incident, Australia. J Infect Dis. 2011;204:400-407. doi:10.1093/infdis/jir269.CrossRefGoogle ScholarPubMed
Aumentado, C, Cerro, BR, Olobia, L, et al. The prevention and control of dengue after Typhoon Haiyan. Western Pac Surveill Response J. 2015;6(Suppl 1):60-65. doi:10.5365/wpsar.2015.6.3.HYN_018.CrossRefGoogle ScholarPubMed
Surmieda, MR, Lopez, JM, Abad-Viola, G, et al. Surveillance in evacuation camps after the eruption of Mt. Pinatubo, Philippines. Morb Mortal Wkly Rep. 1992;41:9-12.Google ScholarPubMed
Maegele, M, Gregor, S, Yuecel, N, et al. One year ago not business as usual: wound management, infection and psychoemotional control during tertiary medical care following the 2004 Tsunami disaster in southeast Asia. Crit Care. 2006;10(2):R50. doi:10.1186/cc4868.CrossRefGoogle Scholar
World Health Organization. Epidemic-prone disease surveillance and response after the tsunami in Aceh province, Indonesia. Wkly Epidemiol Rec. 2005;80(18):160-164.Google Scholar
Garzoni, C, Emonet, S, Legout, L, et al. Atypical infections in tsunami survivors. Emerg Infect Dis. 2005;11:1591-1593.10.3201/eid1110.050715CrossRefGoogle ScholarPubMed
Brennan, RJ, Rimba, K. Rapid health assessment in Aceh Jaya District, Indonesia, following the December 26 tsunami. Emerg Med Australas. 2005;17:341-350. doi:10.1111/j.1742-6723.2005.00755.x.Google ScholarPubMed
Wynwood, SJ, Craig, SB, Graham, GC, et al. The emergence of Leptospira borgpetersenii serovar Arborea as the dominant infecting serovar following the summer of natural disasters in Queensland, Australia 2011. Trop Biomed. 2014;31:281-285.Google ScholarPubMed
Kost, GJ, Mecozzi, DM, Brock, TK, Curtis, M. Pathogen detection in emergencies and disasters. Point Care. 2013;11:6-15. doi:10.1097/POC.0b013e31825a25cb.Google Scholar
Kost, GJ, Tran, NK, Tuntideelert, M, et al. Katrina, the tsunami, and point-of-care testing. Am J Clin Pathol. 2006;126:513-520. doi:10.1309/NWU5E6T0L4PFCBD9.CrossRefGoogle ScholarPubMed
Brock, TK, Mecozzi, DM, Sumner, S, Kost, GJ. Evidence-based point-of-care tests and device designs for disaster preparedness. Am J Disaster Med. 2011;5:285-294.10.5055/ajdm.2010.0034CrossRefGoogle Scholar
Coarsey, CT, Esiobu, N, Narayanan, R, et al. Strategies in Ebola virus disease (EVD) diagnostics at the point of care. Crit Rev Microbiol. 2017;43:779-798. doi:10.1080/1040841X.2017.1313814.CrossRefGoogle Scholar
Perkins, MD, Dye, C, Balasegaram, M, et al. Diagnostic preparedness for infectious disease outbreaks. Lancet. 2017;390:2211-2214. doi:10.1016/S0140-6736(17)31224-2.CrossRefGoogle ScholarPubMed
Foreign Medical Team Working Group. Classification and minimum standards for foreign medical teams in sudden onset. World Health Organ. 2013;103. http://www.who.int/hac/global_health_cluster/fmt_guidelines_september2013.pdf?ua=1.Google Scholar
World Health Organization. The clinical use of blood – handbook. Vol 1. 2002.Google Scholar
Coatsworth, NR. The Australian medical response to Typhoon Haiyan. Med J Aust. 2014;201:632-634. doi:10.5694/mja14.00306.CrossRefGoogle ScholarPubMed
Louie, RF, Ferguson, WJ, Curtis, CM, et al. Vulnerability of point-of-care test reagents and instruments to environmental stresses: implications for health professionals and developers. Clin Chem Lab Med. 2014;52:325-335. doi:10.1515/cclm-2013-0440.CrossRefGoogle ScholarPubMed
National Association of Testing Authorities, Australia. Medical testing field application document – requirements for accreditation (Medical Testing ISO 15189 Standard Application Document); 2013.Google Scholar
Robinson, LJ, Wampfler, R, Betuela, I, et al. Malaria rapid diagnostic test performance. PLoS Med. 2015;12:e1001891. doi:10.1371/journal.pmed.1001891.CrossRefGoogle Scholar
WHO. Laboratory biosafety manual. 3rd ed. Geneva: World Health Organization; 2004.Google Scholar
Kok, J, Ng, J, Li, SC, et al. Evaluation of point-of-care testing in critically unwell patients: comparison with clinical laboratory analysers and applicability to patients with Ebola virus infection. Pathology. 2015;47:405-409. doi:10.1097/PAT.0000000000000296.CrossRefGoogle Scholar
Baart, AM, de Kort, WLAM, van den Hurk, K, Pasker-de Jong PCM. Hemoglobin assessment: precision and practicability evaluated in the Netherlands – the HAPPEN study. Transfusion. 2016;56:1984-1993. doi:10.1111/trf.13546.CrossRefGoogle Scholar
Tirimacco, R, Simpson, P, Siew, L, et al. Evaluation of the HemoCueWBC DIFF point of care instrument. Australasian Association of Clinical Biochemists. Conference poster. http://www.aacb.asn.au/documents/item/1004.Google Scholar
Salimnia, H, Fairfax, MR, Lephart, PR, et al. Evaluation of the FilmArray Blood Culture Identification Panel: results of a multicenter controlled trial. J Clin Microbiol. 2016;54(3):687-698. doi:10.1128/JCM.01679-15.CrossRefGoogle ScholarPubMed
Popowitch, EB, O’Neill, SS, Miller, MB. Comparison of the biofire filmarray RP, Genmark eSensor RVP, Luminex xTAG RVPv1, and Luminex xTAG RVP fast multiplex assays for detection of respiratory viruses. J Clin Microbiol. 2013;51:1528-1533. doi:10.1128/JCM.03368-12.CrossRefGoogle ScholarPubMed
Buss, SN, Leber, A, Chapin, K, et al. Multicenter evaluation of the BioFire FilmArray gastrointestinal panel for etiologic diagnosis of infectious gastroenteritis. J Clin Microbiol. 2015;53:915-925. doi: 10.1128/JCM.02674-14.CrossRefGoogle ScholarPubMed
Leber, AL, Everhart, K, Balada-Llasat, J, Cullison, J. Multi-center clinical evaluation of a multiplex meningitis/encephalitis PCR panel for simultaneous detection of bacteria, yeast, and viruses in cerebrospinal fluid specimens. J Clin Microbiol. 2016;54:2251-2261. doi:10.1128/JCM.00730-16.CrossRefGoogle Scholar
Xiaodong, S, Tambo, E, Chun, W. Diagnostic performance of CareStartTM malaria HRP2/pLDH (Pf/pan) combo test versus standard microscopy on falciparum and vivax malaria between China-Myanmar endemic borders. Malar J. 2013;12:6. doi:10.1186/1475-2875-12-6.CrossRefGoogle Scholar
Simonnet, C, Okandze, A, Matheus, S, et al. Prospective evaluation of the SD BIOLINE Dengue Duo rapid test during a dengue virus epidemic. Eur J Clin Microbiol Infect Dis. 2017;36:2441-2447. doi:10.1007/s10096-017-3083-8.CrossRefGoogle Scholar
Sehgal, SC, Vijayachari, P, Sugunan, AP, Umapathi, T. Field application of Lepto lateral flow for rapid diagnosis of leptospirosis. J Med Microbiol. 2003;52:897-901. doi:10.1099/jmm.0.05064-0.CrossRefGoogle ScholarPubMed
Dittrich, S, Boutthasavong, L, Keokhamhoung, D, et al. A prospective hospital study to evaluate the diagnostic accuracy of rapid diagnostic tests for the early detection of leptospirosis in Laos. Am J Trop Med Hyg. 2018;98:1056-1060. doi:10.4269/ajtmh.17-0702.CrossRefGoogle ScholarPubMed
Conway, DP, Holt, M, McNulty, A, et al. Multi-centre evaluation of the determine HIV combo assay when used for point of care testing in a high risk clinic-based population. PLoS One. 2014;9(4):1-8. doi:10.1371/journal.pone.0094062.CrossRefGoogle Scholar
Causer, LM, Kaldor, JM, Conway, DP, et al. An evaluation of a novel dual treponemal/nontreponemal point-of-care test for syphilis as a tool to distinguish active from past treated infection. Clin Infect Dis. 2015;61(2):184-191. doi:10.1093/cid/civ243.CrossRefGoogle ScholarPubMed
Causer, LM, Kaldor, JM, Fairley, CK, et al. A laboratory-based evaluation of four rapid point-of-care tests for syphilis. PLoS One. 2014;9(3):1-7. doi:10.1371/journal.pone.0091504.CrossRefGoogle ScholarPubMed
Njai, HF, Shimakawa, Y, Sanneh, B, et al. Validation of rapid point-of-care (POC) tests for detection of hepatitis B surface antigen in field and laboratory settings in Gambia, Western Africa. J Clin Microbiol. 2015;53:1156-1163. doi:10.1128/JCM.02980-14.CrossRefGoogle ScholarPubMed
Kim, MH, Kang, SY, Lee, WI. Evaluation of a new rapid test kit to detect hepatitis C virus infection. J Virol Methods. 2013;193:379-382. doi:10.1016/j.jviromet.2013.07.005.CrossRefGoogle Scholar
Yousuf, R, Abdul Ghani, S, Abdul Khalid, N, Leong, C. Study on ABO and RhD blood grouping: comparison between conventional tile method and a new solid phase method (InTec Blood Grouping Test Kit). Malays J Pathol. 2018;40(1):27-32.Google Scholar
Oxoid Limited, Basingstoke. Oxoid SIGNAL blood culture system product detail. 2010;8-10. https://www.fishersci.com/shop/products/thermo-scientific-oxoid-signal-blood-culture-system-blood-culture-system/r65410.Google Scholar
Himmelreich, CA, Orlando, MF, Storch, GA, et al. Comparison of the oxoid signal blood culture system with supplemented peptone broth in a pediatric hospital. J Clin Microbiol. 1989;27:1262-1265.CrossRefGoogle Scholar
McDermott, KM, Hardstaff, RM, Alpen, S, et al. Management of diabetic surgical patients in a deployed field hospital: a model for acute non-communicable disease care in disaster. Prehosp Disaster Med. 2017;32:657-661. doi:10.1017/S1049023X17006707.CrossRefGoogle Scholar
Marr, I, Sarmento, N, Brien, MO, et al. Antimicrobial resistance in urine and skin isolates in Timor-Leste. Integr Med Res. 2018;13:135-138. doi:10.1016/j.jgar.2017.12.010.Google ScholarPubMed
Salazar, MA, Law, R, Pesigan, A, Winkler, V. Health consequences of Typhoon Haiyan in the Eastern Visayas region using a syndromic surveillance database. PLoS Curr Disasters. 2017;1-14. doi:10.1371/currents.dis.4a3d3b4474847b2599aa5c5eefe3a621.Google ScholarPubMed
Giannou, C, Baldan, M. War Surgery. Vol 1. Geneva, ICRC; 2009.10.1308/rcsann.2010.92.2.179bCrossRefGoogle Scholar
Spinella, PC, Perkins, JG, Grathwohl, KW, et al. Fresh whole blood transfusions in coalition military, foreign national, and enemy combatant patients during Operation Iraqi Freedom at a U.S. combat support hospital. World J Surg. 2008;2-6. doi:10.1007/s00268-007-9201-5.CrossRefGoogle Scholar
Spinella, PC. Warm fresh whole blood transfusion for severe hemorrhage: U.S. military and potential civilian applications. Crit Care Med. 2008;36(7). doi:10.1097/CCM.0b013e31817e2ef9.CrossRefGoogle ScholarPubMed
Spinella, PC, Perkins, JG, Grathwohl, KW, et al. Warm fresh whole blood is independently associated with improved survival for patients with combat-related traumatic injuries. J Trauma. 2009;66. doi:10.1097/TA.0b013e31819d85fb.Google ScholarPubMed
Cotton, BA, Podbielski, J, Camp, E, et al. A randomized controlled pilot trial of modified whole blood versus component therapy in severely injured patients requiring large volume transfusions. Ann Surg. 2013;258:527-532. doi:10.1097/SLA.0b013e3182a4ffa0.CrossRefGoogle ScholarPubMed
Blasetti, AG, Petrucci, E, Co, V, et al. First rescue under the rubble: the medical aid in the first hours after the earthquake in Amatrice. 2017;1-5. doi:10.1017/S1049023X17007075.CrossRefGoogle Scholar
Gilstad, C, Roschewski, M, Wells, J, et al. Fatal transfusion-associated graft-versus-host disease with concomitant immune hemolysis in a group A combat trauma patient resuscitated with group O fresh whole blood. Transfusion. 2012;52:930-935. doi:10.1111/j.1537-2995.2011.03365.x.CrossRefGoogle Scholar
Singh, K. Laboratory acquired infections. Clin Infect Dis. 2009;49(3):142. doi:10.1086/599104.CrossRefGoogle ScholarPubMed
Linden, J, Wagner, K, Voytovich, AE, Sheehan, J. Transfusion errors in New York State: an analysis of 10 years’ experience. Transfusion. 2000;40:1207-1213.10.1046/j.1537-2995.2000.40101207.xCrossRefGoogle ScholarPubMed