Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T23:17:52.521Z Has data issue: false hasContentIssue false

On Sets with a Small Subset Sum

Published online by Cambridge University Press:  01 September 1999

Y. O. HAMIDOUNE
Affiliation:
E. Combinatoire, Univ. Pierre et Marie Curie, 4 Place Jussieu, 75230 Paris Cedex 05, France (e-mail: yha@ccr.jussieu.fr)
A. S. LLADÓ
Affiliation:
Dep. Matemàtica Aplicada i Telemàtica, Univ. Politècnica de Catalunya, Jordi Girona, 1, 08034 Barcelona, Spain (e-mail: allado@mat.upc.es, oriol@mat.upc.es)
O. SERRA
Affiliation:
Dep. Matemàtica Aplicada i Telemàtica, Univ. Politècnica de Catalunya, Jordi Girona, 1, 08034 Barcelona, Spain (e-mail: allado@mat.upc.es, oriol@mat.upc.es)

Abstract

Let A be a subset of an abelian group G. The subset sum of A is the set [sum ](A) = {[sum ]xT[mid ]TA}. We prove the following result. Let S be a generating subset of an abelian group G such that 0∉S and 14[les ][mid ]S[mid ]. Then one of the following conditions holds.

(i) [mid ][sum ](S)[mid ][ges ]min([mid ]G[mid ] −3, 3[mid ]S[mid ]−3).

(ii) There is an xS such that S[setmn ]{x} generates a proper subgroup of order less than (3[mid ]S[mid ]−3)/2.

As a consequence, we obtain the following open case of an old conjecture of Diderrich. Let q be a composite odd number and let G be an abelian group of order 3q. Let S be a subset of G with cardinality q+1. Then every element of G is the sum of some subset of S.

Type
Research Article
Copyright
1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)