No CrossRef data available.
Article contents
Small subsets with large sumset: Beyond the Cauchy–Davenport bound
Published online by Cambridge University Press: 21 February 2024
Abstract
For a subset $A$ of an abelian group $G$, given its size $|A|$, its doubling $\kappa =|A+A|/|A|$, and a parameter $s$ which is small compared to $|A|$, we study the size of the largest sumset $A+A'$ that can be guaranteed for a subset $A'$ of $A$ of size at most $s$. We show that a subset $A'\subseteq A$ of size at most $s$ can be found so that $|A+A'| = \Omega (\!\min\! (\kappa ^{1/3},s)|A|)$. Thus, a sumset significantly larger than the Cauchy–Davenport bound can be guaranteed by a bounded size subset assuming that the doubling $\kappa$ is large. Building up on the same ideas, we resolve a conjecture of Bollobás, Leader and Tiba that for subsets $A,B$ of $\mathbb{F}_p$ of size at most $\alpha p$ for an appropriate constant $\alpha \gt 0$, one only needs three elements $b_1,b_2,b_3\in B$ to guarantee $|A+\{b_1,b_2,b_3\}|\ge |A|+|B|-1$. Allowing the use of larger subsets $A'$, we show that for sets $A$ of bounded doubling, one only needs a subset $A'$ with $o(|A|)$ elements to guarantee that $A+A'=A+A$. We also address another conjecture and a question raised by Bollobás, Leader and Tiba on high-dimensional analogues and sets whose sumset cannot be saturated by a bounded size subset.
- Type
- Paper
- Information
- Copyright
- © The Author(s), 2024. Published by Cambridge University Press
Footnotes
Research of Jacob Fox is supported by a Packard Fellowship and by NSF Awards DMS-1953990 and DMS-2154129. Research of Sammy Luo is supported by NSF GRFP Grant DGE-1656518 and NSF Award No. 2303290. Research of Huy Tuan Pham is supported by a Two Sigma Fellowship, a Clay Research Fellowship and a Stanford Science Fellowship. Research of Yunkun Zhou is supported by NSF GRFP Grant DGE-1656518.