Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T19:36:14.196Z Has data issue: false hasContentIssue false

‘Black’ Soils in the Southern Alps: Clay Mineral Formation and Transformation, X-Ray Amorphous Al Phases and Fe Forms

Published online by Cambridge University Press:  01 January 2024

R. Zanelli
Affiliation:
Department of Geography, University of Zurich, CH-8057 Zurich, Switzerland
M. Egli*
Affiliation:
Department of Geography, University of Zurich, CH-8057 Zurich, Switzerland
A. Mirabella
Affiliation:
ISSDS, Research Institute for Soil Study and Conservation, Firenze, Italy
M. Abdelmoula
Affiliation:
Laboratoire de Chimie Physique et Microbiologique pour l’Environnement (LCPME), UMR 7564 CNRS-UHP Nancy I, France
M. Plötze
Affiliation:
ETH Zurich, Institute for Geotechnical Engineering, 8093 Zurich, Switzerland
M. Nötzli
Affiliation:
Department of Geography, University of Zurich, CH-8057 Zurich, Switzerland
*
*E-mail address of corresponding author: megli@geo.unizh.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many soils in southern Switzerland have a black color, contain a large amount of soil organic matter (SOM) and seem to have some andic properties although they did not develop on volcanic parent material. We investigated three typical ‘black’ soils to determine the mechanisms of (clay) mineral formation and transformation. We measured total element pools as well as the dithionite-, pyrophosphate-and oxalate-extractable fractions (Fe, Al, Si). The clay fraction (<2 µm) was analyzed using X-ray diffraction and FTIR spectroscopy. Iron speciation in the solid phase was determined by Mössbauer spectroscopy. With increasing weathering conditions, the plagioclase (albite) content decreases, trioctahedral species in the clay fraction such as biotite, chlorite or trioctahedral vermiculite either decompose or transform into a dioctahedral mineral such as dioctahedral vermiculite or hydroxy interlayered smectite (HIS). Typical weathering products were hydroxy interlayered vermiculite (HIV), HIS, interstratified minerals and kaolinite. The oxidation of Fe(II) into Fe(III) was evident and contributes to the transformation of trioctahedral mineral species into dioctahedral ones. In one soil, a large part of the Fe (up to 41%) was found in the form of Fe oxides. In the surface horizon, the poorly crystalline mineral ferrihydrite was dominant, while in the subsoil goethite prevailed. Maghemite (or maghemite/hematite mixture) was, furthermore, found in distinct concentrations down to a depth of ∼50 cm. The formation of this mineral requires high temperatures which means that a forest fire can influence soil mineralogy down to a considerable depth. The specific climatic conditions with periods of strong humidity alternating with periods of winter droughts, sporadic fire events and the relatively large content of poorly crystalline fractions of Fe and Al contributed to the stabilization of SOM.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Basile-Doelsch, I. Amundson, R. Stone, W.E.E. Masiello, C.A. Bottero, J.Y. Colin, F. Masin, F. Borschneck, D. and Meunier, J.D., (2005) Mineralogical control of organic carbon dynamics in a volcanic ash soil on La Reunion European Journal of Soil Science 56 689703.CrossRefGoogle Scholar
Bergmann, J. and Kleeberg, R., (1998) Rietveld analysis of disordered layer silicates Materials Science Forum 278–281 300305 10.4028/www.scientific.net/MSF.278-281.300.CrossRefGoogle Scholar
Bergmann, J. Friedel, P. and Kleeberg, R., (1998) BGMN — a new fundamental parameters based Rietveld program for laboratory X-ray sources, it’s use in quantitative analysis and structure investigations. Commission of Powder Diffraction, International Union of Crystallography CPD Newsletter 20 58.Google Scholar
Blaser, P. and Sposito, G., (1987) Spectrofluorometric investigation of trace metal complexation by an aqueous chestnut leaf litter extract Soil Science Society of America Journal 51 612619 10.2136/sssaj1987.03615995005100030011x.CrossRefGoogle Scholar
Blaser, P. Kernebeek, P. Tebbens, L. Van Breemen, N. and Luster, J., (1997) Cryptopodzolic soils in Switzerland European Journal of Soil Science 48 411423 10.1046/j.1365-2389.1997.00104.x.CrossRefGoogle Scholar
Bouchard, M. and Jolicoeur, S., (2000) Chemical weathering studies in relation to geomorphological research in southeastern Canada Geomorphology 32 213238 10.1016/S0169-555X(99)00098-7.CrossRefGoogle Scholar
Boudot, J.P. Bel Hadj Brahim, A. Steiman, R. and Seigle-Murandi, F., (1989) Biodegradation of synthetic organometallic complexes of iron and aluminium with selected metal to carbon ratios Soil Biology and Biochemistry 21 961966 10.1016/0038-0717(89)90088-6.CrossRefGoogle Scholar
Bruckert, S. (1970) Influence des composés organique solubles sur la pédogenèse en milieu acide. Thesis, University of Nancy.Google Scholar
Brunner, W. and Blaser, P., (1989) Mineralization of soil organic matter and added carbon substrates in two acidic soils with high non-exchangeable aluminium Zeitschrift für Pflanzenernährung und Bodenkunde 152 367372 10.1002/jpln.19891520405.CrossRefGoogle Scholar
Burga, C. and Perret, R., (1998) Vegetation und Klima der Schweiz seit dem jüngeren Eiszeitalter Thun Ott Verlag.Google Scholar
Carcaillet, C. and Talon, B., (2001) Soil carbon sequestration by Holocene fires inferred from soil charcoal in the dry French Alps Arctic, Antarctic, and Alpine Research 33 282288 10.1080/15230430.2001.12003432.CrossRefGoogle Scholar
Carnicelli, S. Mirabella, A. Cecchini, G. and Sanesi, G., (1997) Weathering of chlorite to a low-charge expandable mineral in a spodosol on the Apennine mountains, Italy Clays and Clay Minerals 45 2841 10.1346/CCMN.1997.0450104.CrossRefGoogle Scholar
Dahlgren, R. Shoji, S. Nanzyo, M., Shoji, S. Nanzyo, M. and Dahlgren, R., (1993) Mineralogical characteristics of volcanic ash soils Volcanic Ash Soils; Genesis, Properties and Utilization Amsterdam Elsevier Science Publishers B.V. 101143 10.1016/S0166-2481(08)70266-6.CrossRefGoogle Scholar
De Coninck, F. Vasu, A. and Raport, C., (1976) Mineralogy of the clay fraction of 4 soils of the Bucegi Mountains (S. Carpathians-Romania) Pédologie 26 255279.Google Scholar
Denef, K. and Six, J., (2004) Clay mineralogy determines the importance of biological versus abiotic processes for macroaggreggate formation and stabilization European Journal of Soil Science 56 469479 10.1111/j.1365-2389.2004.00682.x.CrossRefGoogle Scholar
Dreher, P. and Niederbudde, E.-A., (2000) Characterization of expandable layer silicates in humic-ferralic cambisols (Umbrept) derived from biotite and hornblende Journal of Plant Nutrition and Soil Science 163 447453 10.1002/1522-2624(200008)163:4<447::AID-JPLN447>3.0.CO;2-W.3.0.CO;2-W>CrossRefGoogle Scholar
Duchaufour, P., (1976) Atlas Ecologique des Sols du Monde Paris Masson.Google Scholar
EDI (Eidgenössisches Department des Innern), (1992) Hydrologischer Atlas der Schweiz. Landeshydrologie und - geologie. Bern, Switzerland.Google Scholar
Egli, M. Mirabella, A. and Fitze, P., (2001) Clay mineral formation in soils of two different chronosequences in the Swiss Alps Geoderma 104 145175 10.1016/S0016-7061(01)00079-9.CrossRefGoogle Scholar
Egli, M. Mirabella, A. and Fitze, P., (2003) Formation rates of smectites derived from two Holocene chronosequences in the Swiss Alps Geoderma 117 8198 10.1016/S0016-7061(03)00136-8.CrossRefGoogle Scholar
Fanning, D.S. Keramidas, V.Z. El-Desoky, M.A., Dixon, J.B. and Weed, S.B., (1989) Micas Minerals in Soil Environment 2 Madison, Wisconsin, USA Soil Science Society of America 551634.Google Scholar
Fitze, P. Kägi, B. and Egli, M., (2000) Laboranleitung zur Untersuchung von Boden und Wasser Zürich, Switzerland Geographisches Institut der Universität Zürich.Google Scholar
Golchin, A. Baldock, J.A. Clarke, P. Higashi, T. and Oades, J.M., (1997) The effects of vegetation and burning on the chemical composition of soil organic matter in a volcanic ash soil as shown by 13C NMR spectroscopy. II. Density fractions Geoderma 76 175192 10.1016/S0016-7061(96)00103-6.CrossRefGoogle Scholar
Guillaume, D. Neaman, A. Cathelineau, M. Mosser-Ruck, R. Peiffert, C. Abdelmoula, M. Dubessy, J. Villiearas, F. Baronnet, A. and Michau, N., (2003) Experimental synthesis of chlorite from smectite at 300°C in the presence of iron metal Clay Minerals 38 281302 10.1180/0009855033830096.CrossRefGoogle Scholar
Hantke, R., (1978) Eiszeitalter 1: Die jüngste Erdgeschichte der Schweiz und ihrer Nachbargebiete. Klima, Flora, Fauna, Mensch, Alt- und Mittelpleistozäne, Vogesen, Schwarzwald, Schwäbische Alb Thun, Switzerland Ott Verlag.Google Scholar
Hantke, R., (1983) Eiszeitalter 3: Die jüngste Erdgeschichte der Schweiz und ihrer Nachbargebiete. Westliche Ostalpen mit ihrem bayerischen Vorland bis zum Inn-Durchbruch und Südalpen zwischen Dolomiten und Mont-Blanc Thun, Switzerland Ott Verlag.Google Scholar
Hanudin, E. Matsue, N. Henmi, T., Violante, A. Huang, P.M. Bollag, J.-M. and Gianfreda, L., (2002) Reactions of some short-range ordered aluminosilicates with selected organic ligands Soil Mineral-Organic Matter — Microorganism Interactions and Ecosystem Health Amsterdam Elsevier Science 319332.Google Scholar
Hossner, C.R. and Sparks, D.L., (1996) Dissolution for total elemental analysis Methods of Soil Analysis, Part 3 Chemical Methods Madison, Wisconsin Soil Science Society of America Inc. and American Society of Agronomy Inc. 4964.Google Scholar
Kaiser, K. and Zech, W., (1996) Defects in estimation of aluminium in humus complexes of podzolic soils by pyrophosphate extraction Soil Science 161 452458 10.1097/00010694-199607000-00005.CrossRefGoogle Scholar
Ketterings, Q.M. Bigham, J.M. and Laperche, V., (2000) Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia Soil Science Society of America Journal 64 11081117 10.2136/sssaj2000.6431108x.CrossRefGoogle Scholar
Kleber, M. Zikeli, S. Kastler, M. and Jahn, R., (2003) An Andosol from Eastern Saxony, Germany Zeitschrift für Pflanzenernährung und Bodenkunde 166 533542 10.1002/jpln.200321102.CrossRefGoogle Scholar
Kleber, M. Mikutta, C. and Jahn, R., (2004) Andosols in Germany — pedogenesis and properties Catena 56 6783 10.1016/j.catena.2003.10.015.CrossRefGoogle Scholar
Kleber, M. Mikutta, R. Torn, M.S. and Jahn, R., (2005) Poorly crystalline mineral phases protect organic matter in acid subsoil horizons European Journal of Soil Science 56 717725.CrossRefGoogle Scholar
Lanson, B., (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to studyclayminerals Clays and Clay Minerals 45 132146 10.1346/CCMN.1997.0450202.CrossRefGoogle Scholar
Lundström, U.S. van Breemen, N. and Bain, D.C., (2000) The podzolization process. A review Geoderma 94 91107 10.1016/S0016-7061(99)00036-1.CrossRefGoogle Scholar
Lundström, U.S. van Breemen, N. Bain, D.C. van Hees, P.A.W. Giesler, R. Gustafsson, J.P. Ilvesniemi, H. Karltun, E. Melkerud, P.-A. Olsson, M. Riise, G. Wahlberg, O. Bergelin, A. Bishop, K. Finlay, R. Jongmans, A.G. Magnusson, T. Mannerkosky, H. Nordgren, A. Nyberg, L. Starr, M. and Tau Strand, L., (2000) Advances in understanding the podzolization process resulting from a multidisciplinary study of three coniferous forest soils in the Nordic Countries Geoderma 94 335353 10.1016/S0016-7061(99)00077-4.CrossRefGoogle Scholar
Luster, J., (1990) Cu(II)-Komplexierung durch gelöstes organisches Material in Wasserextrakten aus Laubstreu sowie durch seine Molekularfiltrations- und Umkehrphasen-Chromatographie-Fraktionen Zürich Swiss Federal Institute of Technology.Google Scholar
Mailänder, R. and Veit, H., (2001) Periglacial cover-beds on the Swiss Plateau: indicators of soil, climate and landscape evolution during the Late Quaternary Catena 45 251272 10.1016/S0341-8162(01)00151-5.CrossRefGoogle Scholar
McKeague, J.A. Brydon, J.E. and Miles, N.M., (1971) Differentiation of forms of extractable iron and aluminium in soils Soil Science Society of America Proceedings 35 3338 10.2136/sssaj1971.03615995003500010016x.CrossRefGoogle Scholar
Mirabella, A. and Sartori, G., (1998) The effect of climate on the mineralogical properties of soils from the Val Genova Valley (Trentino, Italy) Fresenius Environmental Bulletin 7 478483.Google Scholar
Mirabella, A. Egli, M. Carnicelli, S. and Sartori, G., (2002) Influence of parent material on clay minerals formation in podzols of Trentino — Italy Clay Minerals 37 699707 10.1180/0009855023740071.CrossRefGoogle Scholar
Mirabella, A. and Egli, M., (2003) Structural transformations of clay minerals in soils of a climosequence in an Italian alpine environment Clays and Clay Minerals 51 264278 10.1346/CCMN.2003.0510303.CrossRefGoogle Scholar
Mizota, C. and van Reeuwijk, L.P. (1989) Clay mineralogy and chemistry of soils formed in volcanic material in diverse climat regions. International Soil Reference and Information Centre Soil Monograph, vol. 2. Wageningen.Google Scholar
Moore, D.M. and Reynolds, R.C., (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals 2 New York Oxford University Press.Google Scholar
Mullins, C.E., (1977) Magnetic susceptibility of the soil and its significance to soil science: a review Journal of Soil Science 28 233246 10.1111/j.1365-2389.1977.tb02232.x.CrossRefGoogle Scholar
Murad, E., (1998) Clays and clay minerals study by Mössbauer spectroscopy Hyperfine Interactions 117 3970 10.1023/A:1012635124874.CrossRefGoogle Scholar
Nørnberg, P. Schwertmann, U. Stanjek, H. Andersen, T. and Gunnlaugsson, H.P., (2004) Mineralogy of a burned soil compared with four anomalously red Quaternary deposits in Denmark Clay Minerals 39 8598 10.1180/0009855043910122.CrossRefGoogle Scholar
Olis, A.C. Malla, P.B. and Douglas, L.A., (1990) The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion Clay Minerals 25 3950 10.1180/claymin.1990.025.1.05.CrossRefGoogle Scholar
Parfitt, R.L. and Childs, C.W., (1988) Estimation of forms of Fe and Al — a review, and analysis of contrasting soils by dissolution and Mössbauer methods Australian Journal of Soil Research 26 121144 10.1071/SR9880121.CrossRefGoogle Scholar
Parfitt, R.L. and Henmi, T., (1982) Comparison of an oxalate-extraction method and an infrared spectroscopic method for determining allophane in soil clays Soil Science and Plant Nutrition 28 183190 10.1080/00380768.1982.10432435.CrossRefGoogle Scholar
Righi, D. Girault, P. and Meunier, A., (1986) Transformation des phyllosilicates dans un sol cryptopodzolique humifère du Plateau de Millevaches, France Clay Minerals 21 4354 10.1180/claymin.1986.021.1.04.CrossRefGoogle Scholar
Righi, D. Huber, K. and Keller, C., (1999) Clay formation and podzol development from postglacial moraines in Switzerland Clay Minerals 34 319332 10.1180/000985599546253.CrossRefGoogle Scholar
Schlumpf, N., (2004) Schwarze Böden der Südschweiz: organisch-geochemische Charakterisierung einer Toposequenz Switzerland Department of Geography, University of Zurich.Google Scholar
Schmidt, M.W.I. Skjemstad, J.O. Gehrt, E. and Kögel-Knabner, I., (1999) Charred organic carbon in German chernozemic soils European Journal of Soil Science 50 351365 10.1046/j.1365-2389.1999.00236.x.CrossRefGoogle Scholar
Schmidt, M.W.I. and Noack, A.G., (2000) Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges Global Biogeochemical Cycles 14 777793 10.1029/1999GB001208.CrossRefGoogle Scholar
Schroeder, P.A. Melear, N.D. West, L.T. and Hamilton, D.A., (2000) Meta-gabbro weathering in the Georgia Piedmont, USA: implications for global silicate weathering rates Chemical Geology 163 235245 10.1016/S0009-2541(99)00129-1.CrossRefGoogle Scholar
Schwertmann, U., Stucki, J.W. Goodman, B.A. and Schwertmann, U., (1988) Occurrence and formation of iron oxides in various pedoenvironments Iron in Soils and Clay Minerals Dordrecht, The Netherlands D. Reidel 267308 10.1007/978-94-009-4007-9_11.CrossRefGoogle Scholar
SGK (Schweizerische Geotechnische Kommission) (1967) Geotechnische Karte der Schweiz. Blatt Nr. 4 St. Moritz-Bellinzona.Google Scholar
SGK (Schweizerische Geotechnische Kommision) (1974) Geologischer Atlas der Schweiz 1:25000. Blatt 1313 Bellinzona.Google Scholar
Shindo, H. Honna, T. Yamemoto, S. and Homna, H., (2002) Distribution of charred plant fragments in Japanese volcanic ash soils with reference to origins of black humic acids Proceedings of the International Humic Substances Society, 20th Anniversary Conference Boston, MA Northeastern University 466468.Google Scholar
Shoji, S. Nanzyo, M. and Dahlgren, R.A., (1993) Volcanic Ash Soils — Genesis, Properties and Utilization Amsterdam Elsevier.Google Scholar
Sidhu, P.S., (1988) Transformation of trace element-substituted maghemite to hematite Clays and Clay Minerals 36 3138 10.1346/CCMN.1988.0360105.CrossRefGoogle Scholar
Skjemstad, J.O. Clarke, P. Taylor, J.A. Oades, J.M. and McClure, S.G., (1996) The chemistry and nature of protected carbon in soil Australian Journal of Soil Research 34 251271 10.1071/SR9960251.CrossRefGoogle Scholar
Stanjek, H., (1987) The formation of maghemite and hematite from lepidocrocite and goethite in a Cambisol from Corsica, France Zeitschrift für Pflanzenernährung und Bodenkunde 150 314318 10.1002/jpln.19871500509.CrossRefGoogle Scholar
Tamura, T., (1958) Identification of clay minerals from acid soils Journal of Soil Science 9 141147 10.1111/j.1365-2389.1958.tb01906.x.CrossRefGoogle Scholar
Tinner, W. Hubschmid, P. Wehrli, M. Ammann, B. and Conedera, M., (1999) Long-term forest fire ecology and dynamics in southern Switzerland Journal of Ecology 87 273289 10.1046/j.1365-2745.1999.00346.x.CrossRefGoogle Scholar
Ugolini, F.C. and Dahlgren, R.A., (2003) Soil development in volcanic ash Global Environmental Research 6 6981.Google Scholar
Van der Marel, H.W., (1951) Gamma ferric oxide in sediments Journal of Sedimentary Petrology 21 1221.CrossRefGoogle Scholar
Williams, S.T. Gray, T.R.G., Dickinson, C.H. and Pugh, G.J.F., (1974) Decomposition of litter on the soil surface Biology of Plant Litter Decomposition London Academic Press 611632 10.1016/B978-0-12-215002-9.50017-4.CrossRefGoogle Scholar
Wondafrash, T.T. Sancho, I.M. Miguel, V.G. and Serrano, R.E., (2005) Relationship between soil color and temperature in the surface horizon of Mediterranean soils: A laboratory study Soil Science 170 495503 10.1097/01.ss.0000175341.22540.93.CrossRefGoogle Scholar
WRB, World Reference Base for Soil Resources (1998) Rome FAO.Google Scholar
Wuthrich, C.h. Schaub, D. Weber, M. Marxer, P. and Conedera, M., (2002) Soil respiration and soil microbial biomass after fire in a sweet chestnut forest in southern Switzerland Catena 48 201215 10.1016/S0341-8162(01)00191-6.CrossRefGoogle Scholar
Zech, W. Guggenberger, P. Zalba, P. and Peinemann, N., (1997) Soil organic matter transformation of Argentinian Hapludolls Zeitschrift für Pflanzenernährung und Bodenkunde 160 563571 10.1002/jpln.19971600507.CrossRefGoogle Scholar
Zehetner, F. Miller, W.P. and West, L.T., (2003) Pedogenesis of volcanic ash soils in Andean Ecuador Soil Science Society of America Journal 67 17971809 10.2136/sssaj2003.1797.CrossRefGoogle Scholar
Zoller, H., (1960) Pollenanalytische Untersuchungen zur Vegetationsgeschichte der insubrischen Schweiz Denkschrift der Schweizerischen Naturforschenden Gesellschaft 83 45156.Google Scholar
Zunino, H. Borie, F. Aguilera, S. Martin, J.P. and Haider, K., (1982) Decomposition of 14C-labeled glucose, plant and microbial products and phenols in volcanic ash-derived soils in Chile Soil Biology and Biochemistry 14 3743 10.1016/0038-0717(82)90074-8.CrossRefGoogle Scholar