Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-17T18:08:55.407Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Hydrocalumite: Influence of Aging Conditions on the Structure, Textural Properties, Thermal Stability, and Basicity

Published online by Cambridge University Press:  01 January 2024

Thiago M. Rossi
Affiliation:
Escola de Química, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Tecnologia, Bloco E, Sala 206, Rio de Janeiro, RJ CEP 21941-909, Brazil
Juacyara C. Campos
Affiliation:
Escola de Química, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Tecnologia, Bloco E, Sala 206, Rio de Janeiro, RJ CEP 21941-909, Brazil
Mariana M. V. M. Souza*
Affiliation:
Escola de Química, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Tecnologia, Bloco E, Sala 206, Rio de Janeiro, RJ CEP 21941-909, Brazil
*
*E-mail address of corresponding author: mmattos@eq.ufrj.br

Abstract

Hydrocalumite (HC) is a type of synthetic layered double hydroxide (LDH) that has many important industrial uses and is commonly synthesized by a co-precipitation method in a water:ethanol (2:3) mixture; however, atmospheric carbon dioxide interferes with the synthesis by decreasing the solubility of other gases in the reaction medium. The aim of the present study was to vary the temperature and aging time used in the coprecipitation method in order to mitigate the adverse effects of carbon dioxide. The water/ethanol mixture (2:3) was able to prevent atmospheric carbon dioxide contamination of the sample, as it decreased the solubility of the gas in the reaction mixture. Aging time (9–36 h) and temperature (35–95°C) were varied to modify the hydrocalumite structure, textural properties, thermal stability, and basicity. The characterization of the samples was performed using X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), nitrogen physisorption, thermogravimetric analysis (TGA), and CO2 temperature-programmed desorption (TPD-CO2) techniques. The aging time of 9 h and temperature of 95°C provided the most crystalline sample with the largest mean crystallite size (49 nm). The variation of the synthesis conditions also provided changes in the surface area (6.5–20.2 m2 g–1), pore diameter (116–148 Å), and pore volume (0.0147–0.0499 cm3 g–1). The temperature ranges for thermal decomposition of structural water and carbonate varied among the samples, indicating different thermal stabilities. The basicity (basic sites quantified by TPD-CO2) was also affected by the change in aging conditions; the sample aged for 9 h at 65°C presented the greatest basicity (1557 μmol g–1), whereas that aged for 36 h at 35°C had the least basicity (337 μmol g–1).

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrado, E.P. (2015). Layered double hydroxides for applications in catalysis and electroluminescent devices. PhD thesis, Universitat Rovira I Virgili, 189 pp.Google Scholar
Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcite-type anionic clays: preparation, properties and applications. Catalysis Today, 11, 173301.CrossRefGoogle Scholar
Chen, H., Sun, Y., Ruan, X., Yu, Y., Zhu, M., Zhang, J., Zhou, J., Xu, Y., Liu, J., & Qian, G. (2016). Advanced treatment of stabilized landfill leachate after biochemical process with hydrocalumite chloride (Ca/Al-Cl LDH). Bioresource Technology, 210, 131137.CrossRefGoogle ScholarPubMed
Cota, I., Ramírez, E., Medina, F., Sueiras, J. E., Layrac, G., & Tichit, D. (2010). New synthesis route of hydrocalumite-type materials and their application as basic catalysts for aldol condensation. Applied Clay Science, 50, 498502.CrossRefGoogle Scholar
Domínguez, M., Pérez-Bernal, M. E., Ruano-Casero, R. J., Barriga, C., Rives, V., Ferreira, R. A. S., Carlos, L. D., & Rocha, J. (2011). Multiwavelength luminescence in lanthanide-doped hydrocalumite and mayenite. Chemistry of Materials, 23, 19932004.CrossRefGoogle Scholar
Granados-Reyes, J., Salagre, P., & Cesteros, Y. (2014). Effect of microwaves, ultrasounds and interlayer anion on the hydrocalumites synthesis. Microporous and Mesoporous Materials, 199, 117124.CrossRefGoogle Scholar
Guo, Q., & Tian, J. (2013). Removal of fluoride and arsenate from aqueous solution by hydrocalumite via precipitation and anion exchange. Chemical Engineering Journal, 231, 121131.CrossRefGoogle Scholar
Hills, A. W. D. (1968). The mechanism of the thermal decomposition of calcium carbonate. Chemical Engineering Science, 23, 297320.CrossRefGoogle Scholar
Jia, Y., Wang, H., Zhao, X., Liu, X., Wang, Y., Fan, Q., & Zhou, J. (2016). Kinetics, isotherms and multiple mechanisms of the removal for phosphate by Cl-hydrocalumite. Applied Clay Science, 129, 116121.CrossRefGoogle Scholar
Kuwahara, Y., Tsuji, K., Ohmichi, T., Kamegawa, T., Mori, K., & Yamashita, H. (2012). Waste-slag hydrocalumite and derivatives as heterogeneous base catalysts. ChemSusChem, 5, 15231532.CrossRefGoogle ScholarPubMed
Leroux, F., Léone, P., Besse, J.-P., Taviot-Guého, C., Palvadeau, P., & Rousselot, I. (2002). Insights on the structural chemistry of hydrocalumite and hydrotalcite-like materials: investigation of the series Ca2M3+(OH)6Cl·2H2O (M3+: Al3+, Ga3+, Fe3+, and Sc3+) by X-Ray Powder Diffraction. Journal of Solid State Chemistry, 167, 137144.Google Scholar
Linares, C. F., Ocanto, F., Bretto, P., & Monsalve, M. (2014). Study of as-synthesized and calcined hydrocalumites as possible antacid agents. Bulletin of Materials Science, 37, 941944.CrossRefGoogle Scholar
Linares, C. F., Moscosso, J., Alzurutt, V., Ocanto, F., Bretto, P., & González, G. (2016). Carbonated hydrocalumite synthesized by the microwave method as a possible antacid. Materials Science and Engineering C, 61, 875878.CrossRefGoogle ScholarPubMed
López-Salinas, E., Serrano, M. E. L., Jácome, M. A. C., & Secora, I. S. (1996). Characterization of synthetic hydrocalumite-type [Ca2Al(OH)6]NO3· mH2O: Effect of the calcination temperature. Journal of Porous Materials, 2, 291297.CrossRefGoogle Scholar
Mao, N., Zhou, C. H., Tong, D. S., Yu, W. H., & Lin, C. X. C. (2017). Exfoliation of layered double hydroxide solids into functional nanosheets. Applied Clay Science, 144, 6078.CrossRefGoogle Scholar
Mao, N., Zhou, C. H., Keeling, J., Fiore, S., Zhang, H., Chen, L., Jin, G. C., Zhu, T. T., Tong, D. S., & Yu, W. H. (2018). Tracked changes of dolomite into Ca-Mg-Al layered double hydroxide. Applied Clay Science, 159, 2536.CrossRefGoogle Scholar
Marsal, L. F., Salagre, P., Díaz, F., Cesteros, Y., Pérez-Barrado, E., Aguiló, M., Llorca, J., Pujol, M. C., & Pallarès, J. (2015). Influence of acid–base properties of calcined MgAl and CaAl layered double hydroxides on the catalytic glycerol etherification to short-chain polyglycerols. Chemical Engineering Journal, 264, 547556.Google Scholar
Oladoja, N. A., Adelagun, R. O. A., Ololade, I. A., Anthony, E. T., & Alfred, M. O. (2014). Synthesis of nano-sized hydrocalumite from a Gastropod shell for aqua system phosphate removal. Separation and Purification Technology, 124, 186194.CrossRefGoogle Scholar
Pérez-Barrado, E., Pujol, M. C., Aguiló, M., Cesteros, Y., Díaz, F., Pallarès, J., Marsal, L. F., & Salagre, P. (2013). Fast aging treatment for the synthesis of hydrocalumites using microwaves. Applied Clay Science, 80–81, 313319.CrossRefGoogle Scholar
Pfeiffer, H., Ávalos-Rendón, T., Lima, E., & Valente, J. S. (2011). Thermochemical and cyclability analyses of the CO2 absorption process on a Ca/Al layered double hydroxide. Journal of Environmental Engineering, 137, 10581065.CrossRefGoogle Scholar
Prado, R. G., Almeida, G. D., De Oliveira, A. R., De Souza, P. M. T. G., Cardoso, C. C., Constantino, V. R. L., Pinto, F. G., Tronto, J., & Pasa, V. M. D. (2016). Ethanolysis and methanolysis of soybean and macauba oils catalyzed by mixed oxide Ca-Al from hydrocalumite for biodiesel production. Energy and Fuels, 30, 66626670.CrossRefGoogle Scholar
Rossi, T. M., Campos, J. C., & Souza, M. M. V. M. (2019). An evaluation of calcined hydrocalumite as carbon dioxide adsorbent using thermogravimetric analysis. Applied Clay Science, 182, 105252105261.CrossRefGoogle Scholar
Roy, A., Forano, C., Malki, K. E., & Besse, J.P. (1992). Anionic clays: trends in pillaring chemistry. Expanded Clays and Other Microporous Solids, 2, 108169.CrossRefGoogle Scholar
Sánchez-Cantú, M., Camargo-Martínez, S., Pérez-Díaz, L. M., Hernández-Torres, M. E., Rubio-Rosas, E., & Valente, J. S. (2015). Innovative method for hydrocalumite-like compounds' preparation and their evaluation in the transesterification reaction. Applied Clay Science, 114, 509516.CrossRefGoogle Scholar
Sánchez-Cantú, M., Barcelos-Santiago, C., Gomez, C. M., Ramos-Ramírez, E., Ruiz Peralta, M. d. L., Tepale, N., González-Coronel, V. J., Mantilla, A., & Tzompantzi, F. (2016). Evaluation of hydrocalumite-like compounds as catalyst precursors in the photodegradation of 2,4-dichlorophenoxyacetic acid. International Journal of Photoenergy, 2016, 113.CrossRefGoogle Scholar
Terzis, A., Filippakis, S., Kuzel, H. J., & Burzlaff, H. (1987). The crystal structure of Ca2Al(OH)6Cl.2H2O. Zeitschrift für Kristallographie - Crystalline Materials, 181, 2934.CrossRefGoogle Scholar
Wen, X., Yang, Z., Yan, J., & Xie, X. (2015). Green preparation and characterization of a novel heat stabilizer for poly(vinyl chloride)-hydrocalumites. RSC Advances, 5, 3202032026.CrossRefGoogle Scholar
Wen, X., Yang, Z., Xiao, X., Yang, H., Xie, X., & Huang, J. (2016). The impact of hydrocalumites additives on the electrochemical performance of zinc-nickel secondary cells. Electrochimica Acta, 187, 6572.CrossRefGoogle Scholar
Wu, Y., Chi, Y., Bai, H., Qian, G., Cao, Y., Zhou, J., Xu, Y., Liu, Q., Xu, Z. P., & Qiao, S. (2010). Effective removal of selenate from aqueous solutions by the Friedel phase. Journal of Hazardous Materials, 176, 193198.CrossRefGoogle ScholarPubMed
Xu, S., Zhang, B., Chen, Z., Yu, J., Evans, D. G., & Zhang, F. (2011). A general and scalable formulation of pure CaAl-layered double hydroxide via an organic/water solution route. Industrial and Engineering Chemistry Research, 50, 65676572.CrossRefGoogle Scholar
Zhang, P., Qian, G., Shi, H., Ruan, X., Yang, J., & Frost, R. L. (2012). Mechanism of interaction of hydrocalumites (Ca/Al-LDH) with methyl orange and acidic scarlet GR. Journal of Colloid and Interface Science, 365, 110116.CrossRefGoogle ScholarPubMed