Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T21:37:56.721Z Has data issue: false hasContentIssue false

Clay Material of an Eocene Deposit (Khanguet Rheouis, Tunisia): Identification Using Geochemical and Mineralogical Characterization

Published online by Cambridge University Press:  01 January 2024

Fathi Allouche
Affiliation:
Laboratoire Géoressources, Matériaux, Environnements et Changements Globaux, LR13ES23, Faculté des Sciences de Sfax, Université de Sfax, BP1171, Sfax 3000, Tunisie
Mabrouk Eloussaief*
Affiliation:
Laboratoire de Recherche ‘Eau, Energie et Environnement’ (LR3E, code LR99ES35), Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, BP W, 3038 Sfax, Tunisie
Sana Ghrab
Affiliation:
Laboratoire de Recherche ‘Eau, Energie et Environnement’ (LR3E, code LR99ES35), Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, BP W, 3038 Sfax, Tunisie
Nejib Kallel
Affiliation:
Laboratoire Géoressources, Matériaux, Environnements et Changements Globaux, LR13ES23, Faculté des Sciences de Sfax, Université de Sfax, BP1171, Sfax 3000, Tunisie
*
*E-mail address of corresponding author: eloussaiefmabrouk@yahoo.fr

Abstract

Despite the numerous studies on geomaterials in Tunisia, quite a few clay varieties are not yet well defined. In fact no detailed geological, mineralogical, or geochemical characterizations of Tunisian palygorskite deposits have been carried out to date. The purpose of the present work was to study the continental Eocene clay deposit at the southern end of the Tunisian North axis, between Jebel Rheouis and Jebel Boudinar, to determine its potential as a clay reserve. Nine samples were collected from the Cherahil formation representing the lower, middle, and upper levels. The analytical results obtained using several techniques (chemical analysis, X-ray diffraction, specific surface area measurements, Fourier-Transform infrared spectroscopy, scanning electron microscopy) revealed that palygorskite is the dominant clay mineral. Dolomite and quartz are present as associated minerals. Chemical analysis of sample AR9 showed a smaller potassium content compared to other samples. Sample AR9 consists essentially of dolomite associated with palygorskite and quartz. Other samples (AR5, AR6, and AR7) collected from the same Cherahil formation contained palygorskite as the main phyllosilicate mineral (80%). The important reserve of palygorskite was found in the middle of the Cherahil formation. Dolomite and quartz associated with palygorskite reduced the length and crystallinity of the fibrous clay morphology. Analysis by scanning electron microscopy proved that the crystallinity of palygorskite was less in the lower and upper parts of the Cherahil formation. The central palygorskite deposit may be of interest for pharmaceutical (adsorbent drug) and other applications. The two other levels of Cherahil formation are mineralogically heterogeneous and considered economically less important than the middle level, which is rich in palygorskite.

Type
Article
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdeljaoued, S. (1983). Étude sédimentologique et structurale de la partie est de la chaîne nord des Chotts (Tunisie méridionale). Thèse, Université de Tunis, 148 pp.Google Scholar
Abdeljaoued, S. (1991). Les dolocrètes et les calcrètes du Paléocène–Éocène, Tunisie méridionale. Thèse d'État, Université de Tunis, 2, 242 pp.Google Scholar
Abdeljaoued, S. (1997). Mode de genèse des palygorskites dans la série continentale éocène de Tunisie méridionale. Notes du Service géologique, Tunisie, 63, 1527.Google Scholar
Affouri, A., Eloussaief, M., Kallel, N., & Benzina, M. (2015). Application of Tunisian limestone material for chlorobenzene adsorption: characterization and experimental design. Arabian Journal of Geoscience, 8, 1118311192.CrossRefGoogle Scholar
Ashraf, M. A., Hussain, I., Rasheed, R., Iqbal, M., Riaz, M., & Arif, M. S. (2017). Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. Journal of Environmental Management, 198, 132143.CrossRefGoogle ScholarPubMed
Bédir, M. (1995). Mécanismes géodynamiques des bassins associés aux couloirs de coulissement de la marge Atlasique de la Tunisie. Séismo-stratigraphie, séismo-tectonique et implications pétrolières, Thèse d'État, université de Tunis, 2, 407.Google Scholar
Benzina, M. (1990). Kinetic study and thermodynamic of organic adsorption onto local clays, Modelling adsorbant on bed fixed. Thesis of Doctorat of Physic Sciences, Faculty of Sciences of Tunis, 25.Google Scholar
Boukadi, N., & Bédir, M. (1996). L'halocinèse en Tunisie: contexte tectonique et chronologie des événements, C. R. Académie des Sciences. Paris, série IIa, 322, 587594.Google Scholar
Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of American Chemical Society, 62, 1723.CrossRefGoogle Scholar
Burollet, P. F. (1956). Contribution à l'étude stratigraphique de la Tunisie centrale. Annales des Mines et de la Géologie, Tunis, 18, 1350.Google Scholar
Cagatay, M. N. (1990). Palygorskite in the Eocene rocks of the dammam dome, Saudi Arabia. Clays and Clay Minerals, 38, 299307.CrossRefGoogle Scholar
Draidia, S., El Ouahabi, M., Daoudi, L., Havenith, H. B., & Fagel, N. (2016). Occurrences and genesis of palygorskite/sepiolite and associated minerals in the Barzaman formation, United Arab Emirates. Clay Minerals, 51, 763779.CrossRefGoogle Scholar
Eloussaief, M., Bouaziz, S., Kallel, N., & Benzina, M. (2013a). Valorisation of El Haria clay in the removal of arsenic from aqueous solution. Desalination Water Treatment, 52, 22202224.CrossRefGoogle Scholar
Eloussaief, M., Kallel, N., Yaacoubi, A., & Benzina, M. (2011). Mineralogical identification, spectroscopic characterization, and potential environmental use of natural clay materials on chromate removal from aqueous solutions. Chemical Engineering Journal, 168, 10241031.CrossRefGoogle Scholar
Eloussaief, M., Sdiri, A., & Benzina, M. (2013b). Modelling the adsorption of mercury onto natural and aluminium pillared clays. Environmental Science Pollution Research, 20, 469479.CrossRefGoogle ScholarPubMed
Felhi, M., Tlili, A., Gaied, M. E., & Montacer, M. (2008). Mineralogical study of kaolinitic clays from Sidi El Bader in the far north of Tunisia Applied Clay Science, 39, 208217.CrossRefGoogle Scholar
Frost, R. L., Locos, O. B., Ruan, J., & Kloprogge, J. T. (2001). Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites. Vibrational Spectroscopy, 27, 13.CrossRefGoogle Scholar
Garcia-Romero, E., Suarez, M., Santaren, J., & Alvarez, A. (2007). Crystallochemical characterization of the palygorskite and sepiolite from the Allou Kagne deposit, Senegal. Clays and Clay Minerals, 55, 606617.CrossRefGoogle Scholar
Ghnainia, L., Eloussaief, M., Zouari, K., & Abbes, C. (2016). Wastewater treatment in petroleum activities: example of “SEWAGE” unit in the BG Tunisia Hannibal plant. Applied Petrochemical Research, 6, 155162.CrossRefGoogle Scholar
Ghrab, S., Boujelben, N., Medhioub, M., & Jamoussi, F. (2014). Chromium and nickel removal from industrial wastewater using Tunisian clay. Desalination Water Treatment, 52, 22532260.CrossRefGoogle Scholar
Ghrab, S., Eloussaief, M., Lambert, S., Bouaziz, S., & Benzina, M. (2017). Adsorption of terpenic compounds onto organo-palygorskite. Environmental Science Pollution Research, 25, 1825118261.CrossRefGoogle ScholarPubMed
Hafez, A. I., Naser, S. G., Ibrahim, H. N., Abou El-magd, W. S. I., & Hashem, A. (2016). Evaluation of kaolin clay as natural material for transformer oil treatment to reduce the impact of ageing on copper strip. Egyptian Journal of Petroleum, 26, 533539.CrossRefGoogle Scholar
Jamoussi, F., Abbès, C., Fakhfakh, E., Bédir, M., Kharbachi, S., Soussi, M., Zargouni, F., & López-Galindo, A. (2001). Découverte de l'Éocène continental autour de l'archipel de Kasserine, aux Jebels Rhéouis, Boudinar et Chamsi en Tunisie centro-méridionale: nouvelles implications paléogéographiques. Comptes Rendus d'académie des Sciences -Série IIA-Earth and Planetary Science, 333, 329335.Google Scholar
Jamoussi, F., Bédir, M., Boukadi, N., Kharbachi, S., Zargouni, F., López-Galindo, A., & Paquet, H. (2003). Evolution minéralogique des argiles et contrôle tectono-eustatique des bassins de la marge Tunisienne. Geoscience, Géomatériaux / Geomaterials, 335, 175183.Google Scholar
Jarraya, I., Fourmentin, S., Benzina, M., & Bouaziz, S. (2011). The characterization of prepared organoclay materials (ddma) and gas sorption of chlorobenzene. The Canadian Journal of Chemical Engineering, 89, 392400.CrossRefGoogle Scholar
Jemaï, M. B. M., Sdiri, A., Ben Salah, I., Ben Aissa, L., Bouaziz, S., & Duplay, J. (2017). Geological and technological characterization of the Late Jurassic-Early Cretaceous clay deposits (Jebel Ammar, northeastern Tunisia) for ceramic industry. Journal of African Earth Science, 129, 282290.CrossRefGoogle Scholar
Kadri, A., Matmati, F., Ben Ayed, N., & Ben Haj Ali, M. (1986). Découverte de l'Éocène inférieur continental au Jebel Lessouda (Tunisie centrale). Notes du Service géologique, Tunisie, 51, 5359.Google Scholar
Khiari, I., Mefteh, S., Sánchez-Espejo, R., Cerezo, P., Aguzzi, C., López-Galindo, A., Jamoussi, F., & Viseras Iborra, C. (2014). Study of traditional Tunisian medina clays used in therapeutic and cosmetic mud-packs. Applied Clay Science, 101, 141148.CrossRefGoogle Scholar
Martín-Ramos, J. (2004) D. X-Powder, a software package for powder X-ray diffraction analysis. Legal Deposit G.R.1001/04, http://www.xpowder.com.Google Scholar
Mefteh, S., Khiyari, I., Sanchez-Espejo, R., Aguzzi, C., Lopez Galindo, A., Jamoussi, F., & Viseras, C. (2014). Characterisation of Tunisian layered clay materials to be usedin semisolid health care products. Materials Technology Journal, 29, B88–B95.Google Scholar
Mkaouara, S., Maherzib, W., Pizette, P., Zaitan, H., & Benzina, M. (2019). A comparative study of natural Tunisian clay types in the formulation of compacted earth blocks. Journal of African Earth Science, 160, 103620.CrossRefGoogle Scholar
Park, Y., Godwin, A., Ayoko, , & Frost, R. L. (2011). Characterization of organoclays and adsorption of p-nitrophenol: Environmental application. Journal of Colloid and Interface Science, 360, 440456.CrossRefGoogle ScholarPubMed
Qiu, G., Xie, Q., Liu, H., Chen, T., Xie, J., & Li, H. (2015). Removal of Cu (II) from aqueous solutions using dolomite–palygorskite clay: Performance and mechanisms. Applied Clay Science, 118, 107115.CrossRefGoogle Scholar
Sassi, S., Triat, J.-M., Truc, G., & Millot, G. (1984). Découverte de l'Éocène continental en Tunisie centrale: la formation du Djebel Gharbi et ses encroûtements carbonatés, C. R. Académie des Sciences. Paris, série II, 299, 357364.Google Scholar
Sdiri, A., Higashi, T., Hatta, T., Jamoussi, F., & Norio, T. (2010). Mineralogical and spectroscopic characterization, and potential environmental use of limestone from the Abiod formation, Tunisia. Environmental Earth Science, 61, 12751287.CrossRefGoogle Scholar
Soong, R. (1992). Palygorskite occurrence in northwest Nelson, South Island, New Zealand. Journal of Geology and Geophysics, 35, 325330.CrossRefGoogle Scholar
Tlili, A., Felhi, M., & Montacer, M. (2010). Origin and depositional environment of palygorskite and sepiolite from the Ypresian phosphatic series, Southwestern Tunisia. Clays and Clay Minerals, 58, 573581.CrossRefGoogle Scholar
Xu, J., Wang, W., & Wang, A. (2014). Effect of squeeze, homogenization, and freezing treatments on particle diameter and rheological properties of palygorskite. Advanced PowderTechnology, 25, 968977.Google Scholar
Yuan, X., Li, C., Guan, G., Liu, X., Xiao, Y., & Zhang, D. (2007). Synthesis and characterization of polyethylene terephthalate/attapulgite nanocomposites. Journal of Applied Polymer Science, 103, 12791286.CrossRefGoogle Scholar
Zha, F., Huang, W., Wang, J., Chang, J., Ding, J., & Ma, J. (2013). Kinetic and thermodynamic aspects of arsenate adsorption on aluminum oxide modified palygorskite nanocomposites. Chemical Engineering Journal, 215–216, 579585.CrossRefGoogle Scholar
Zhang, Y., Wang, W., Zhang, J., Liu, P., & Wang, A. (2015). Comparative study about adsorption of natural palygorskite for methylene blue. Chemical Engineering Journal, 262, 390398.CrossRefGoogle Scholar
Zhu, Y., Chen, T., Liu, H., Xu, B., & Xie, J. (2016). Kinetics and thermodynamics of Eu(III) and U(VI) adsorption onto palygorskite. Journal of Molecular Liquids, 219, 272278.CrossRefGoogle Scholar
Zouari, H. (1984). Étude structurale du Jebel Chaambi (Tunisie centrale) Relation entre la minéralisation et la structure. Thèse 3e cycle, Université de Franche-Comté, Besançon, 93.Google Scholar