Article contents
A Homological Property and Arens Regularity of Locally Compact Quantum Groups
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We characterize two important notions of amenability and compactness of a locally compact quantum group $\mathbb{G}$ in terms of certain homological properties. For this, we show that $\mathbb{G}$ is character amenable if and only if it is both amenable and co-amenable. We finally apply our results to Arens regularity problems of the quantum group algebra ${{L}^{1}}\left( \mathbb{G} \right)$. In particular, we improve an interesting result by Hu, Neufang, and Ruan.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2017
References
[1]
Aristov, O. Y., Amenability and compact type for Hopf-von Neumann algebras from the homological point of view. In: Banach algebras and their applications. Contemporary Mathematics 363. American Mathematical Society, Providence, RI, 200, pp. 15–37. http://dx.doi.Org/10.1090/conm/363/06638
Google Scholar
[2]
Bédos, E. and Tuset, L., Amenability and co-amenability for locally compact quantum groups.
Internat. J. Math.
14(2003) 865–884. http://dx.doi.Org/10.1142/S01 291 67X03002046
Google Scholar
[3]
Desmedt, P., Quaegebeur, J., and Vaes, S., Amenability and the bicrossed product construction.
Illinois J. Math.
46(2002), 1259–1277.Google Scholar
[4]
Forrest, B., Arens regularity and discrete groups.
Pacific J. Math.
151(1991), 217–227. http://dx.doi.Org/10.2140/pjm.1991.151.217
Google Scholar
[5]
Hu, Z., Neufang, M., and Ruan, Z. J., On topological centre problems and SIN quantum groups.
J. Funct. Anal.
257(2009), 610–640. http://dx.doi.Org/10.1016/j.jfa.2009.02.004
Google Scholar
[6]
Hu, Z., Neufang, M., and Ruan, Z. J., Module maps over locally compact quantum groups.
Studia Math.
211(2012), 111–145
http://dx.doi.Org/10.4064/sm211-2-2
Google Scholar
[7]
Kalantar, M. and Neufang, M., From quantum groups to groups.
Canadian J. Math.
65(2013), 1073–1094. http://dx.doi.Org/10.4153/CJM-2012-047-X
Google Scholar
[8]
Kaniuth, E., Lau, A. T., and Pym, J., On f-amenability ofBanach algebras.
Math. Proc. Cambridge Philos. Soc.
144(2008), 85–96. http://dx.doi.Org/10.101 7/S0305004107000874
Google Scholar
[9]
Kaniuth, E., Lau, A. T., and Pym, J., On character amenability ofBanach algebras.
J. Math. Anal. Appl.
344(2008), 942–955. http://dx.doi.Org/10.1016/j.jmaa.2008.03.037
Google Scholar
[10]
Kustermans, J. and Vaes, S., Locally compact quantum groups.
Ann. Scient. Ec. Norm. Sup.
33(2000), 837–934. http://dx.doi.Org/10.1016/S0012-9593(00)01055-7
Google Scholar
[11]
Kustermans, J. and Vaes, S., Locally compact quantum groups in the von Neumann algebraic setting.
Math. Scand.
92(2003), 68–92.Google Scholar
[12]
Lau, A. T., Analysis on a class ofBanach algebras with application to harmonic analysis on locally compact groups and semigroups.
Fund. Math.
118(1983), 161–175.Google Scholar
[13]
Monfared, M. S., Character amenability ofBanach algebras.
Math. Proc. Cambridge Philos. Soc.
144(2008), 697–706. http://dx.doi.Org/10.1017/S0305004108001126
Google Scholar
[15]
Runde, V., Characterizations of compact and discrete quantum groups through second duals.
J. Operator Theory
60(2008), 415–428.Google Scholar
[16]
Runde, V., Uniform continuity over locally compact quantum groups.
J. London Math. Soc.
80(2009), 55–71. http://dx.doi.Org/10.1112/jlms/jdpO11
Google Scholar
[17]
Sahami, A. and Pourabbas, A., On f-biflat and f-biprojective Banach algebras.
Bull. Belg. Math. Soc. Simon Stevin
20(2013), 789–801.Google Scholar
[18]
Soltan, P. and Viselter, A., A note on amenability of locally compact quantum groups.
Canad. Math. Bull.
57(2014), 424–430. http://dx.doi.Org/10.41 53/CMB-2O12-032-3
Google Scholar
[19]
Tomatsu, R., Amenable discrete quantum groups.
J. Math. Soc. Japan.
58(2006), 949–964. http://dx.doi.Org/10.2969/jmsj71179759531
Google Scholar
[20]
Ülger, A., Arens regularity of the weakly sequentially complete Banach algebras and applications.
Proc. Amer. Math. Soc.
127(1999), 3221–3227. http://dx.doi.Org/! 0.1090/S0002-9939-99-04894-7
Google Scholar
You have
Access
- 1
- Cited by