Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-08T12:49:11.507Z Has data issue: false hasContentIssue false

Correspondence theorems for Hopf algebroids with applications to affine groupoids

Published online by Cambridge University Press:  11 April 2023

Laiachi El Kaoutit
Affiliation:
Facultad de Ciencias, Departamento de Álgebra and IMAG, Universidad de Granada, Fuente Nueva s/n. E810071 Granada, Spain e-mail: kaoutit@ugr.es
Aryan Ghobadi
Affiliation:
School of Mathematics, Queen Mary University of London, Mile End Road, E1 4NS London, UK e-mail: a.ghobadi@qmul.ac.uk
Paolo Saracco
Affiliation:
Département de Mathématique, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050 Brussels, Belgium e-mail: paolo.saracco@ulb.be
Joost Vercruysse*
Affiliation:
Département de Mathématique, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050 Brussels, Belgium e-mail: paolo.saracco@ulb.be

Abstract

We provide a correspondence between one-sided coideal subrings and one-sided ideal two-sided coideals in an arbitrary bialgebroid. We prove that, under some expected additional conditions, this correspondence becomes bijective for Hopf algebroids. As an application, we investigate normal Hopf ideals in commutative Hopf algebroids (affine groupoid schemes) in connection with the study of normal affine subgroupoids.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Paolo Saracco is a Chargé de Recherches of the Fonds de la Recherche Scientifique—FNRS and a member of the “National Group for Algebraic and Geometric Structures and their Applications” (GNSAGA-INdAM). Aryan Ghobadi is a postdoctoral researcher under the EPSRC grant EP/W522508/1 and would also like to thank the LMS for the travel grant ECR-1920-42, which allowed the author to be included in this project. Joost Vercruysse would like to thank the Fédération Wallonie-Bruxelles (FWB) for support through the ARC project “From algebra to combinatorics, and back.”

References

Abe, E., Hopf algebras, Cambridge Tracts in Mathematics, 74, Cambridge University Press, Cambridge–New York, 1980.Google Scholar
Barbarán Sánchez, J. J. and El Kaoutit, L., Linear representations and Frobenius morphisms of groupoids . SIGMA 15(2019), Article no. 019, 33 pp.Google Scholar
Böhm, G., Hopf algebroids . In: Handbook of algebra. Vol. 6, Elsevier/North-Holland, Amsterdam, 2009, pp. 173235.Google Scholar
Bourbaki, N., Algèbre commutative. Chapitre 1 à 4, Éléments de Mathématique, Springer, Berlin, 2006, reprint of the 1985 original.CrossRefGoogle Scholar
Brown, R., Groupoids and van Kampen’s theorem . Proc. Lond. Math. Soc. 17(1967), 385401.CrossRefGoogle Scholar
Brzeziński, T. and Militaru, G., Bialgebroids, ${\times}_{\mathrm{A}}$ -bialgebras and duality . J. Algebra 251(2002), no. 1, 279294.CrossRefGoogle Scholar
Brzeziński, T. and Wisbauer, R., Corings and comodules, London Mathematical Society Lecture Note Series, 309, Cambridge University Press, Cambridge, 2003.CrossRefGoogle Scholar
Connes, A. and Moscovici, H., Rankin–Cohen brackets and the Hopf algebra of transverse geometry . Mosc. Math. J. 4 (2004), no. 1, 111130, 311.CrossRefGoogle Scholar
Deligne, P., Catégories tannakiennes . In Cartier, P., Katz, N. M., Manin, Y. I., Illusie, L., Laumon, G., and Ribet, K. A. (eds.), The Grothendieck festschrift. Vol. II, Progress in Mathematics, 87, Birkhäuser, Boston, 1990, pp. 111195.Google Scholar
Demazure, M. and Gabriel, P., Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Paris; North-Holland, Amsterdam, 1970, Avec un appendice Corps de classes local par Michiel Hazewinkel.Google Scholar
Doi, Y., Unifying Hopf modules . J. Algebra 153(1992), no. 2, 373385.CrossRefGoogle Scholar
El Kaoutit, L., Representative functions on discrete groupoids and duality with Hopf algebroids. Preprint, 2013. arXiv:1311.3109 Google Scholar
El Kaoutit, L., On geometrically transitive Hopf algebroids . J. Pure Appl. Algebra 222(2018), no. 11, 34833520.CrossRefGoogle Scholar
El Kaoutit, L. and Gómez-Torrecillas, J., On the finite dual of a co-commutative Hopf algebroid. Application to linear differential matrix equations and Picard–Vessiot theory . Bull. Belg. Math. Soc. Simon Stevin. 28(2021), 53121.CrossRefGoogle Scholar
El Kaoutit, L. and Kowalzig, N., Morita theory for Hopf algebroids, principal bibundles, and weak equivalences . Doc. Math. 22(2017), 551609.CrossRefGoogle Scholar
El Kaoutit, L. and Saracco, P., Topological tensor product of bimodules, complete Hopf algebroids and convolution algebras . Commun. Contemp. Math. 21(2019), no. 6, 153.CrossRefGoogle Scholar
El Kaoutit, L. and Saracco, P., The Hopf algebroid structure of differentially recursive sequences . Quaest. Math. 45(2022), no. 4, 547593.CrossRefGoogle Scholar
Ghobadi, A., Hopf algebroids, bimodule connections and noncommutative geometry. Preprint, 2020. arXiv:2001.08673 Google Scholar
Ghobadi, A., Isotopy quotients of Hopf algebroids and the fundamental groupoid of digraphs . J. Algebra 610(2022), 591631.CrossRefGoogle Scholar
Goehle, G., Groupoid crossed products. Ph.D. thesis, Dartmouth College, 2009.Google Scholar
Gómez-Torrecillas, J., Comonads and Galois corings . Appl. Categ. Struct. 14(2006), nos. 5–6, 579598.CrossRefGoogle Scholar
Gran, M., Sterck, F., and Vercruysse, J., A semi-abelian extension of a theorem by Takeuchi . J. Pure Appl. Algebra 223(2019), no. 10, 41714190.CrossRefGoogle Scholar
Janelidze, G. and Tholen, W., Facets of descent. III. Monadic descent for rings and algebras . Appl. Categ. Struct. 12(2004), nos. 5–6, 461477.CrossRefGoogle Scholar
Kadison, L., Pseudo-Galois extensions and Hopf algebroids. In: Brzeziński, T., Pardo, J. L. Gómez, Shestakov, I., and Smith, P. F. (eds.), Modules and comodules, Trends in Mathematics, Birkhäuser, Basel, 2008, pp. 247264.CrossRefGoogle Scholar
Lu, J. H., Hopf algebroids and quantum groupoids . Int. J. Math. 7(1996), no. 1, 4770.CrossRefGoogle Scholar
Mackenzie, K. C. H., Lie groupoids and lie algebroids in differential geometry, London Mathematical Society Lecture Note Series, 124, Cambridge University Press, Cambridge, 1987.CrossRefGoogle Scholar
Mackenzie, K. C. H., General theory of lie groupoids and lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005.Google Scholar
MacLane, S., Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer, New York–Berlin, 1971.Google Scholar
Paques, A. and Tamusiunas, T., The Galois correspondence theorem for groupoid actions . J. Algebra 509(2018), 105123.CrossRefGoogle Scholar
Popescu, N., Abelian categories with applications to rings and modules, London Mathematical Society Monographs, 3, Academic Press, London–New York, 1973.Google Scholar
Ravenel, D. C., Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics Series, Academic Press, San Diego, CA, 1986.Google Scholar
Saracco, P., On anchored Lie algebras and the Connes–Moscovici bialgebroid construction. J. Noncommutative Geom. 16(2022), no. 3, 10071053.Google Scholar
Schauenburg, P., Bialgebras over non-commutative rings and a structure theorem for Hopf bimodules . Appl. Categ. Struct. 6(1998), no. 2, 193222.CrossRefGoogle Scholar
Schauenburg, P., Duals and doubles of quantum groupoids (×R-Hopf Algebras) . In: New trends in Hopf algebra theory (La Falda, 1999), Contemporary Mathematics, 267, American Mathematical Society, Providence, RI, 2000, pp. 273299.CrossRefGoogle Scholar
Sweedler, M. E., Groups of simple algebras . Publ. Math. Inst. Hautes Études Sci. 44(1974), 79189.CrossRefGoogle Scholar
Takeuchi, M., A correspondence between Hopf ideals and sub-Hopf algebras . Manuscripta Math. 7(1972), 143163.CrossRefGoogle Scholar
Takeuchi, M., Groups of algebras over $A\otimes \bar {A}$ . J. Math. Soc. Japan 29(1977), no. 3, 459492.CrossRefGoogle Scholar
Takeuchi, M., $\sqrt{\mathrm{Morita}}$ theory—formal ring laws and monoidal equivalences of categories of bimodules . J. Math. Soc. Japan 39(1987), no. 2, 301336.CrossRefGoogle Scholar
Waterhouse, W. C., Introduction to affine group schemes, Graduate Texts in Mathematics, 66, Springer, New York–Berlin, 1979.CrossRefGoogle Scholar
Yoneda, N., On Ext and exact sequences . J. Fac. Sci. Univ. Tokyo Sect. I(1960), no. 8, 507576.Google Scholar