Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T18:12:18.388Z Has data issue: false hasContentIssue false

TEMPERATURE-DEPENDENT DEVELOPMENT OF THE SPECKLED GREEN FRUITWORM, ORTHOSIA HIBISCI GUENÉE (LEPIDOPTERA: NOCTUIDAE)1

Published online by Cambridge University Press:  31 May 2012

Gary J.R. Judd
Affiliation:
Agriculture Canada Research Station, Summerland, British Columbia, Canada V0H 1Z0
Joan E. Cossentine
Affiliation:
Agriculture Canada Research Station, Summerland, British Columbia, Canada V0H 1Z0
Mark G.T. Gardiner
Affiliation:
Agriculture Canada Research Station, Summerland, British Columbia, Canada V0H 1Z0
Donald R. Thomson
Affiliation:
Pacific Biocontrol, 719 2nd Street, Suite 12, Davis, California, USA 95616

Abstract

Temperature-dependent development of eggs, larvae, and pupae of the speckled green fruitworm, Orthosia hibisci Guenée, at constant temperatures of 5–30.0 °C, 7.5–27.5 °C, and 0.8–20.8 °C, respectively, was described. Development times decreased with increasing temperatures and minimum developmental times in eggs, larvae, and pupae occurred at ca. 27.5, 25, and 20.8 °C, respectively. Variation in development times of all life stages was modelled accurately (R2 values 0.98–0.99) with a Weibull distribution. Relationships between temperature and developmental rates of all life stages were described by linear degree-day (DD) and nonlinear poikilotherm models. There were significant differences (ANOVA, P < 0.05) among the slopes of regression equations describing developmental rates of different life stages and larval instars. Minimum developmental temperatures for eggs (3.4 °C), first- through fifth-instar larvae (4.7, 2.9, 3.6, 3.5, and 3.7 °C), and pupae (2.8 °C) were determined by extrapolation of linear regression equations to the x-intercept. Median development time of eggs, first- through fifth-instar larvae, and pupae required 99.0, 44.2, 51.5, 52.4, 57.1, 69.9, and 61.3 DD above the minimum developmental temperatures, respectively. Developmental rates of eggs and all larval instars averaged were described by six-parameter models exhibiting low- and high-temperature inhibition. Development of pupae was best described by a four-parameter model exhibiting low- but no high-temperature inhibition. This information should be useful for developing a phenology model to improve management actions against O. hibisci.

Résumé

On trouvera ici la description du développement en fonction de la température chez l’Orthésie verte, Orthosia hibisci Guenée, à de températures constantes situées entre 5 et 30 °C dans le cas des oeufs, entre 7,5 et 27,5 °C dans le cas des larves, et entre 0,8 et 20,8 °C dans le cas des chrysalides. La durée du développement diminue à mesure qu’augmente la température et la durée du développement des oeufs est minimale à 27,5 °C, celle des larves à 25,0 °C, et celle des chrysalide à 20,8 °C. Le modèle de Weibull permet de représenter avec exactitude les variations dans la durée du développement à tous les stades (R2 entre 0,98 et 0,99). Les relations entre la température et les taux de développement à tous les stades s’expriment par un modèle linéaire degrés-jours (DD) et par un modèle non linéaire qui s’applique aux poïkilothermes. Il existe des différences significatives (analyse de la variance, P < 0,05) entre les pentes des droites de régression qui décrivent les taux de développement des différentes étapes de la vie et des différents stades larvaires. Les températures minimales de développement des oeufs (3,4 °C), des larves du premier au cinquième stades (4,7, 2,9, 3,6, 3,5 et 3,7 °C) et des chrysalides (2,8 °C) ont été déterminées par extrapolation des droites de régression jusqu’à leur intersection avec l’axe des x. La durée médiane de développement des oeufs nécessite 99,0 degrés-jours au-dessus du seuil inférieur de température de développement, celle du développement des stades larvaires 1 à 5 nécessite 44,2, 51,5, 52,4, 57,1 et 69,9 degrés-jours au-dessus du seuil, et celle du développement des chrysalides nécessite 61,3 degrés-jours au-dessus du seuil. Les taux de développement des oeufs et de tous les stades larvaires pondérés sont décrits au moyen de modèles à six variables qui peuvent être inhibées par des températures trop basses ou trop hautes. Le développement des chrysalides répond à un modèle à quatre variables qui peuvent être inhibées par des températures trop basses, mais pas par des températures trop hautes. Ces résultats peuvent s’avérer utiles dans l’élaboration d’un modèle phénologique de contrôle d’O. hibisci.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, C.Y. 1959. The determination and significance of the base temperature in a linear heat unit system. Proceedings of the American Society for Horticulture Science 74: 430445.Google Scholar
British Columbia Ministry of Agriculture, Fisheries, and Food. 1993. Tree Fruit Production Guide. B.C. Ministry of Agriculture, Fisheries and Food, Victoria, B.C.135 pp.Google Scholar
Campbell, A., Fraser, B.D., Gilbert, N., Gutierrez, A.P., and Mackauer, M.. 1974. Temperature requirements of some aphids and their parasites. Journal of Applied Ecology 11: 431438.CrossRefGoogle Scholar
Chapman, P.J., and Lienk, S.E.. 1974. Green Fruitworms. New York Food Life Sciences Bulletin 49: 14 pp.Google Scholar
Commission of Inquiry—B.C. Tree Fruit Industry. 1990. Report of the Commission of Inquiry—British Columbia Tree Fruit Industry, P.A. Lusztig (Commissioner). Queen's Printer, Victoria, B.C.175 pp.Google Scholar
Dyck, V.A., and Gardiner, M.G.T.. 1992. Sterile-insect release program to control the codling moth Cydia pomonella (L.) (Lepidoptera: Olethreutidae) in British Columbia, Canada. Acta Phytopathologica et Entomologica Hungarica 27: 219222.Google Scholar
Higley, L.G., Pedigo, L.P., and Ostlie, K.R.. 1986. DEGDAY: A program for calculating degree-days, and assumptions behind the degree-day approach. Environmental Entomology 15: 9991016.CrossRefGoogle Scholar
Judd, G.J.R., Gardiner, M.G.T., and Thomson, D.R.. 1992. Management of codling moth with pheromones: A new twist in insect control. British Columbia Orchardist 15: 1215.Google Scholar
Lienk, S.E., and Chapman, P.J.. 1978. Flight periods of Orthosia hibisci Guenée (Noctuidae: Lepidoptera) in relation to the calendar, temperature and host development. Journal of the New York Entomological Society 4: 304.Google Scholar
Madsen, H.F., and Procter, P.J.. 1982. Insects and Mites of Tree Fruits in British Columbia. B.C. Ministry of Agriculture and Food, Victoria, B.C.70 pp.Google Scholar
Minitab. 1989. Minitab Users Guide, DOS Microcomputer Version, Release 7. Minitab Inc., State College, PA. 134 pp.Google Scholar
Paradis, R.O. 1978. Orthosia hibisci (Guenée) (Lépidoptères: Noctuidae) dans les pommeraies du sudouest du Québec. I. Description et comportement. Phytoprotection 59: 92100.Google Scholar
Rings, R.W. 1970. Contributions to the bionomics of green fruitworms: The life history of Orthosia hibisci. Journal of Economic Entomology 63: 15621568.Google Scholar
Rings, R.W. 1975. Faunal composition of the green fruitworm complex. Journal of Economic Entomology 68: 178180.Google Scholar
SAS Institute. 1985. SAS User's Guide: Statistics, Version 5. SAS Institute, Cary, NC. 956 pp.Google Scholar
Schoolfield, R.M., Sharpe, P.J.H., and Magnuson, C.E.. 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. Journal of Theoretical Biology 88: 719731.Google Scholar
Sharpe, P.J.H., Curry, G.L., DeMichele, D.W., and Cole, C.L.. 1977. Distribution model of organisms development times. Journal of Theoretical Biology 66: 2138.Google Scholar
Sharpe, P.J.H., and DeMichele, D.W.. 1977. Reaction kinetics of poikilotherm development. Journal of Theoretical Biology 64: 649670.CrossRefGoogle ScholarPubMed
Shorey, H.H., and Hale, R.L.. 1965. Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology 58: 522524.CrossRefGoogle Scholar
Tauber, M.T., and Tauber, C.A.. 1976. Insect seasonality: Diapause maintenance, termination, and postdiapause development. Annual Review of Entomology 21: 81107.Google Scholar
Wagner, T.L., Wu, H., Feldman, R.M., Sharpe, P.J.H., and Coulson, R.N.. 1985. Multiple-cohort approach for simulating development of insect populations under variable temperatures. Annals of the Entomological Society of America 78: 691704.Google Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., and Coulson, R.N.. 1984 a. Modeling distributions of insect development time: A literature review and application of a Weibull function. Annals of the Entomological Society of America 77: 475487.CrossRefGoogle Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., Schoolfield, R.M., and Coulson, R.N.. 1984 b. Modeling insect development rates: A literature review and application of a biophysical model. Annals of the Entomological Society of America 77: 208225.Google Scholar
Welch, S.M., and Croft, B.A.. 1983. Models of direct fruit pests of apple. pp. 343368in Croft, B.A., and Hoyt, S.C. (Eds.), Integrated Management of Insect Pests of Pome and Stone Fruits. Wiley and Sons Inc., New York, NY.Google Scholar