Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T05:47:20.072Z Has data issue: false hasContentIssue false

On the volume of lattice manifolds

Published online by Cambridge University Press:  17 April 2009

Krzysztof Kołodziejczyk
Affiliation:
Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland e-mail: kolodz@im.pwr.wroc.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The volume of a general lattice polyhedron P in ℝN can be determined in terms of numbers of lattice points from N − 1 different lattices in P Ehrhart gave a formula for the volume of “polyèdre entier” in even-dimensional spaces involving only N/2 lattices. The aim of this note is to comment on Ehrhart's formula and provide a similar volume formula applicable to lattice polyhedra that are N-dimensional manifolds in ℝN.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

REFERENCES

[1]Cappell, S.E. and Shaneson, J.L., ‘Genera of algebraic varieties and counting of lattice points’, Bull. Amer. Math. Soc 30 (1994), 6269.CrossRefGoogle Scholar
[2]Diaz, R. and Robins, S., ‘The Ehrhart polynomial of a lattice n-simplex’, Electron. Res. Announc. Amer. Math. Soc 2 (1996), 16.CrossRefGoogle Scholar
[3]Ehrhart, E., ‘Calcul de la mesure d'un polyèdre entier par un décompte de points’, C.R. Acad. Sci. Paris 258 (1964), 51315133.Google Scholar
[4]Ehrhart, E., ‘Sur un problème de géométrie diophantienne linéaire I, II’, J. Reine Angew. Math. 226 (1967), 129; 227 (1967), 25–49.Google Scholar
[5]Gritzmann, P. and Wills, J.M., Lattice points, (Gruber, P.M. and Wills, J.M., Editor), Handbook of Convex Geometry (North Holland, Amsterdam, 1993).CrossRefGoogle Scholar
[6]Gruber, P.M. and Lekkerkerker, C.G., Geometry of Numbers (North-Holland, Amsterdam, 1987).Google Scholar
[7]Kołodziejczyk, K., ‘A new formula for the volume of lattice polyhedra’, Monatsh. Math 122 (1996), 367375.CrossRefGoogle Scholar
[8]Kołodziejczyk, K., ‘An ‘odd’ formula for the volume of three-dimensional lattice polyhedra’, Geom. Dedicata 61 (1996), 271278.CrossRefGoogle Scholar
[9]Kołodziejczyk, K., ‘The boundary characteristic and the volume of lattice polyhedra’, Discrete Math 190 (1998), 137148.CrossRefGoogle Scholar
[10]Kołodziejczyk, K., ‘On odd points and the volume of lattice polyhedra’, J. Geom. (to appear).Google Scholar
[11]Kołodziejczyk, K., ‘Hadwiger-Wills type higer dimensional generalizations of Pick's theorem’, Discrete Comput. Geom. (to appear).Google Scholar
[12]Macdonald, I.G., ‘The volume of a lattice polyhedron’, Proc. Cambridge Philos. Soc 59 (1963), 719726.CrossRefGoogle Scholar
[13]Macdonald, I.G., ‘Polynomials associated with finite cell-complexes’, J. London Math. Soc 4 (1971), 181192.CrossRefGoogle Scholar
[14]Reeve, J.E., ‘Le volume des polyèdres entiers’, C.R. Acad. Sci. Paris 244 (1957), 19901992.Google Scholar
[15]Reeve, J.E., ‘On the volume of lattice polyhedra’, Proc. London Math. Soc 7 (1957), 378395.CrossRefGoogle Scholar
[16]Scott, P.R., ‘The fascination of the elementary’, Amer. Math. Monthly 94 (1987), 759768.CrossRefGoogle Scholar