Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-08T06:15:39.705Z Has data issue: false hasContentIssue false

ON EXTERIOR POWERS OF REFLECTION REPRESENTATIONS

Published online by Cambridge University Press:  06 October 2023

HONGSHENG HU*
Affiliation:
Beijing International Center for Mathematical Research, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China

Abstract

In 1968, Steinberg [Endomorphisms of Linear Algebraic Groups, Memoirs of the American Mathematical Society, 80 (American Mathematical Society, Providence, RI, 1968)] proved a theorem stating that the exterior powers of an irreducible reflection representation of a Euclidean reflection group are again irreducible and pairwise nonisomorphic. We extend this result to a more general context where the inner product invariant under the group action may not necessarily exist.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bourbaki, N., Lie Groups and Lie Algebras: Chapters 4–6, Elements of Mathematics (Springer-Verlag, Berlin, 2002); translated from the 1968 French original by A. Pressley.CrossRefGoogle Scholar
Chevalley, C., Théorie des groupes de Lie. Tome III. Théorèmes généraux sur les algèbres de Lie, Actualités Scientifiques et Industrielles, 1226 (Hermann & Cie, Paris, 1955).Google Scholar
Curtis, C. W., Iwahori, N. and Kilmoyer, R. W., ‘Hecke algebras and characters of parabolic type of finite groups with (B,N)-pairs’, Publ. Math. Inst. Hautes Études Sci. 40 (1971), 81116.CrossRefGoogle Scholar
Fulton, W. and Harris, J., Representation Theory. A First Course, Graduate Texts in Mathematics, 129 (Springer-Verlag, New York, 1991).Google Scholar
Geck, M. and Pfeiffer, G., Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras, London Mathematical Society Monographs, New Series, 21 (Clarendon Press, Oxford–New York, 2000).Google Scholar
Hu, H., ‘Reflection representations of Coxeter groups and homology of Coxeter graphs’, Preprint, 2023, arXiv:2306.12846.Google Scholar
Kane, R., Reflection Groups and Invariant Theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 5 (Springer-Verlag, New York, 2001).CrossRefGoogle Scholar
Milne, J. S., Algebraic Groups. The Theory of Group Schemes of Finite Type over a Field, Cambridge Studies in Advanced Mathematics, 170 (Cambridge University Press, Cambridge, 2017).CrossRefGoogle Scholar
Steinberg, R., Endomorphisms of Linear Algebraic Groups, Memoirs of the American Mathematical Society, 80 (American Mathematical Society, Providence, RI, 1968).CrossRefGoogle Scholar