Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-17T18:58:43.375Z Has data issue: false hasContentIssue false

Signature-based validation of real-world economic scenarios

Published online by Cambridge University Press:  04 April 2024

Hervé Andrès*
Affiliation:
Milliman R&D, Paris, France CERMICS, Ecole des Ponts, INRIA, Marne-la-Vallée, France
Alexandre Boumezoued
Affiliation:
Milliman R&D, Paris, France
Benjamin Jourdain
Affiliation:
CERMICS, Ecole des Ponts, INRIA, Marne-la-Vallée, France
*
Corresponding author: Hervé Andrès; Email: herve.andres@milliman.com

Abstract

Motivated by insurance applications, we propose a new approach for the validation of real-world economic scenarios. This approach is based on the statistical test developed by Chevyrev and Oberhauser ((2022) Journal of Machine Learning Research, 23(176), 1–42.) and relies on the notions of signature and maximum mean distance. This test allows to check whether two samples of stochastic processes paths come from the same distribution. Our contribution is to apply this test to a variety of stochastic processes exhibiting different pathwise properties (Hölder regularity, autocorrelation, and regime switches) and which are relevant for the modelling of stock prices and stock volatility as well as of inflation in view of actuarial applications.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The International Actuarial Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abi Jaber, E., Miller, E. and Pham, H. (2021) Markowitz portfolio selection for multivariate affine and quadratic Volterra models. SIAM Journal on Financial Mathematics, 12(1), 369409. ISSN 1945-497X.10.1137/20M1347449CrossRefGoogle Scholar
Akyildirim, E., Gambara, M., Teichmann, J. and Zhou, S. (2022) Applications of signature methods to market anomaly detection. arXiv preprint arXiv:2201.02441 .Google Scholar
Alfonsi, A. (2005) On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods and Applications, 11(4), 355384. ISSN 0929-9629,1569-3961.10.1515/156939605777438569CrossRefGoogle Scholar
Alfonsi, A. and Kebaier, A. (2024) Approximation of Stochastic Volterra Equations with kernels of completely monotone type. Mathematics of Computation, 93(346), 643677. ISSN 0025-5718,1088-6842.10.1090/mcom/3911CrossRefGoogle Scholar
Amisano, G. and Fagan, G. (2013) Money growth and inflation: A regime switching approach. Journal of International Money and Finance, 33, 118145.10.1016/j.jimonfin.2012.09.006CrossRefGoogle Scholar
Asadi, S. and Al Janabi, M.A.M. (2020) Measuring market and credit risk under Solvency II: Evaluation of the standard technique versus internal models for stock and bond markets. European Actuarial Journal, 10(2), 425456. ISSN 2190-9733.10.1007/s13385-020-00235-0CrossRefGoogle Scholar
Azran, A. and Ghahramani, Z. (2006) A new approach to data driven clustering. Proceedings of the 23rd International Conference on Machine Learning, pp. 5764.10.1145/1143844.1143852CrossRefGoogle Scholar
Bayer, C., Hager, P.P., Riedel, S. and Schoenmakers, J. (2023) Optimal stopping with signatures. Annals of Applied Probability, 33(1), 238273. ISSN 1050-5164,2168-8737.10.1214/22-AAP1814CrossRefGoogle Scholar
Bilokon, P., Jacquier, A. and McIndoe, C. (2021) Market regime classification with signatures. arXiv preprint arXiv:2107.00066 .10.2139/ssrn.3877650CrossRefGoogle Scholar
Black, F. and Scholes, M. (1973) The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637654. ISSN 0022-3808.10.1086/260062CrossRefGoogle Scholar
Boudreault, M. and Panneton, C.-M. (2009) Multivariate models of equity returns for investment guarantees valuation. North American Actuarial Journal, 13(1), 3653. ISSN 1092-0277.10.1080/10920277.2009.10597539CrossRefGoogle Scholar
Buehler, H., Horvath, B., Lyons, T., Perez Arribas, I. and Wood, B. (2020) Generating financial markets with signatures. Available at SSRN 3657366.10.2139/ssrn.3657366CrossRefGoogle Scholar
Cartea, A., Pérez Arribas, I. and Sánchez-Betancourt, L. (2022) Double-execution strategies using path signatures. SIAM Journal on Financial Mathematics, 13(4), 13791417. ISSN 1945-497X.10.1137/21M1456467CrossRefGoogle Scholar
Chen, K.-T. (1957) Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Annals of Mathematics (2), 65, 163178. ISSN 0003-486X.10.2307/1969671CrossRefGoogle Scholar
Chevyrev, I. and Kormilitzin, A. (2016) A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788 .Google Scholar
Chevyrev, I. and Oberhauser, H. (2022) Signature moments to characterize laws of stochastic processes. Journal of Machine Learning Research, 23(176), 142.Google Scholar
Cohen, S.N., Lui, S., Malpass, W., Mantoan, G., Nesheim, L., de Paula, A., Reeves, A., Scott, C., Small, E. and Yang, L. (2023) Nowcasting with signature methods. arXiv preprint arXiv:2305.10256.Google Scholar
Cont, R. and Das, P. (2022) Rough volatility: Fact or artefact? arXiv preprint arXiv:2203.13820 .10.2139/ssrn.4065951CrossRefGoogle Scholar
Cont, R. and Das, P. (2023) Quadratic variation and quadratic roughness. Bernoulli, 29(1), 496522.10.3150/22-BEJ1466CrossRefGoogle Scholar
Cuchiero, C., Gazzani, G., Möller, J. and Svaluto-Ferro, S. (2023a) Joint calibration to spx and vix options with signature-based models. arXiv preprint arXiv:2301.13235 .10.1111/mafi.12442CrossRefGoogle Scholar
Cuchiero, C., Gazzani, G. and Svaluto-Ferro, S. (2023b) Signature-based models: Theory and calibration. SIAM Journal on Financial Mathematics, 14(3), 910957. ISSN 1945-497X.10.1137/22M1512338CrossRefGoogle Scholar
Cuchiero, C. and Möller, J. (2023) Signature methods in stochastic portfolio theory. arXiv preprint arXiv:2310.02322 .Google Scholar
Cucker, F. and Smale, S. (2002) On the mathematical foundations of learning. Bulletin (New Series) of the American Mathematical Society, 39(1), 149. ISSN 0273-0979.10.1090/S0273-0979-01-00923-5CrossRefGoogle Scholar
Dudley, R.M. (2002) Real Analysis and Probability, Cambridge Studies in Advanced Mathematics, Vol. 74. Cambridge: Cambridge University Press. ISBN 0-521-00754-2. Revised reprint of the 1989 original.Google Scholar
El Euch, O., Fukasawa, M. and Rosenbaum, M. (2018) The microstructural foundations of leverage effect and rough volatility. Finance and Stochastics, 22(2), 241280. ISSN 0949-2984,1432-1122.10.1007/s00780-018-0360-zCrossRefGoogle Scholar
Evans, M. and Wachtel, P. (1993) Inflation regimes and the sources of inflation uncertainty. Journal of Money, Credit and Banking, 25(3), 475511.10.2307/2077719CrossRefGoogle Scholar
Fawcett, T. (2002) Problems in stochastic analysis: Connections between rough paths and non-commutative harmonic analysis. Ph.D. Thesis, University of Oxford.Google Scholar
Fermanian, A. (2021) Embedding and learning with signatures. Computational Statistics & Data Analysis, 157, Paper No. 107148, 23. ISSN 0167-9473.10.1016/j.csda.2020.107148CrossRefGoogle Scholar
Floryszczak, A., Lévy Véhel, J. and Majri, M. (2019) A conditional equity risk model for regulatory assessment. ASTIN Bulletin, 49(1), 217242. ISSN 0515-0361.10.1017/asb.2018.35CrossRefGoogle Scholar
Gatheral, J., Jaisson, T. and Rosenbaum, M. (2018) Volatility is rough. Quantitative Finance, 18(6), 933949. ISSN 1469-7688.10.1080/14697688.2017.1393551CrossRefGoogle Scholar
Graf, S., Haertel, L., Kling, A. and Ruß, J. (2014) The impact of inflation risk on financial planning and risk-return profiles. Astin Bulletin, 44(2), 335365. ISSN 0515-0361.10.1017/asb.2014.1CrossRefGoogle Scholar
Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B. and Smola, A. (2012) A kernel two-sample test. Journal of Machine Learning Research, 13, 723773. ISSN 1532-4435.Google Scholar
Gretton, A., Fukumizu, K., Harchaoui, Z. and Sriperumbudur, B.K. (2009) A fast, consistent kernel two-sample test. In Advances in Neural Information Processing Systems, 22.Google Scholar
Gyurkó, L.G. and Lyons, T. (2010) Rough paths based numerical algorithms in computational finance. In Mathematics in Finance. Contemporary Mathematics, Vol. 515, pp. 17–46. Providence, RI: American Mathematical Society.10.1090/conm/515/10120CrossRefGoogle Scholar
Gyurkó, L.G., Lyons, T., Kontkowski, M. and Field, J. (2013) Extracting information from the signature of a financial data stream. arXiv preprint arXiv:1307.7244 .Google Scholar
Han, B. and Wong, H.Y. (2021) Mean-variance portfolio selection under Volterra Heston model. Applied Mathematics and Optimization, 84(1), 683710. ISSN 0095-4616,1432-0606.10.1007/s00245-020-09658-3CrossRefGoogle Scholar
Hardy, M.R., Freeland, R.K. and Till, M.C. (2006) Validation of long-term equity return models for equity-linked guarantees. North American Actuarial Journal, 10(4), 2847. ISSN 1092-0277.10.1080/10920277.2006.10597412CrossRefGoogle Scholar
Heber, G., Lunde, A., Shephard, N. and Sheppard, K. (2009) Oxford-man institute’s realized library. Version 0.1, Oxford&Man Institute, University of Oxford.Google Scholar
Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distributions, 2nd ed. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, Vol. 1. New York: John Wiley & Sons, Inc. ISBN 0-471-58495-9. A Wiley-Interscience Publication.Google Scholar
Kalsi, J., Lyons, T. and Arribas, I.P. (2020) Optimal execution with rough path signatures. SIAM Journal on Financial Mathematics, 11(2), 470493. ISSN 1945-497X.10.1137/19M1259778CrossRefGoogle Scholar
Kidger, P. and Lyons, T. (2020) Signatory: differentiable computations of the signature and logsignature transforms, on both CPU and GPU. International Conference on Learning Representations.Google Scholar
Levin, D., Lyons, T. and Ni, H. (2013) Learning from the past, predicting the statistics for the future, learning an evolving system. arXiv preprint arXiv:1309.0260.Google Scholar
Lin, X.S. and Yang, S. (2020) Efficient dynamic hedging for large variable annuity portfolios with multiple underlying assets. Astin Bulletin, 50(3), 913957. ISSN 0515-0361.10.1017/asb.2020.26CrossRefGoogle Scholar
Lyons, T. (1998) Differential equations driven by rough signals. Revista Matemática Iberoamericana, 14(2), 215310. ISSN 0213-2230.10.4171/rmi/240CrossRefGoogle Scholar
Lyons, T., Caruana, M. and Lévy, T. (2007) Differential Equations Driven by Rough Paths. Lecture Notes in Mathematics, Vol. 1908. Berlin: Springer. ISBN 978-3-540-71284-8; 3-540-71284-4. Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004, With an introduction concerning the Summer School by Jean Picard.Google Scholar
Lyons, T., Nejad, S. and Perez Arribas, I. (2020) Non-parametric pricing and hedging of exotic derivatives. Applied Mathematical Finance, 27(6), 457494. ISSN 1350-486X,1466-4313.10.1080/1350486X.2021.1891555CrossRefGoogle Scholar
Ma, J., Lu, Z. and Chen, D. (2023) Optimal reinsurance-investment with loss aversion under rough Heston model. Quantitative Finance, 23(1), 95109. ISSN 1469-7688,1469-7696.Google Scholar
Morrill, J., Fermanian, A., Kidger, P. and Lyons, T. (2020) A generalised signature method for multivariate time series feature extraction. arXiv preprint arXiv:2006.00873.Google Scholar
Ni, H., Szpruch, L., Sabate-Vidales, M., Xiao, B., Wiese, M. and Liao, S. (2021) Sig-wasserstein gans for time series generation. Proceedings of the Second ACM International Conference on AI in Finance, pp. 18.10.1145/3490354.3494393CrossRefGoogle Scholar
Otero, L., Durán, P., Fernández, S. and Vivel, M. (2012) Estimating insurers capital requirements through markov switching models in the solvency ii framework. International Research Journal of Finance and Economics, 86, 2038.Google Scholar
Perez Arribas, I. (2020) Signatures in machine learning and finance. Ph.D. Thesis, University of Oxford.Google Scholar
Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M.Z., Barrow, D.K., Taieb, S.B., Bergmeir, C., Bessa, R.J., Bijak, J., Boylan, J.E., Browell, J., Carnevale, C., Castle, J.L., Cirillo, P., Clements, M.P., Cordeiro, C., Oliveira, F.L.C, De Baets, S., Dokumentov, A., Ellison, J., Fiszeder, P., Franses, P.H., Frazier, D.T., Gilliland, M., Gönul, M.S., Goodwin, P., Grossi, L., Grushka-Cockayne, Y., Guidolin, M., Guidolin, M., Gunther, U., Guo, X., Guseo, R., Harvey, N., Hendry, D.F., Hollyman, R., Januschowski, T., Jeon, J., Jose, V.R.R., Kang, Y., Koehler, A.B., Kolassa, S., Kourentzes, N., Leva, S., Li, F., Litsiou, K., Makridakis, S., Martin, G.M., Martinez, A.B., Meeran, S., Modis, T., Nikolopoulos, K., Önkal, D., Paccagnini, A., Panagiotelis, A., Panapakidis, I., Pavía, J.M., Pedio, M., Pedregal, D.J., Pinson, P., Ramos, P., Rapach, D.E., Reade, J.J., Rostami-Tabar, B., Rubaszek, M., Sermpinis, G., Shang, H.L., Spiliotis, E., Syntetos, A.A., Talagala, D., Talagala, T.S., Tashman, L., Thomakos, D., Thorarinsdottir, T., Todini, E., Arenas, J.R.T., Wang, X., Winkler, R.L., Yusupova, A. and Ziel, F. (2022) Forecasting: Theory and practice. International Journal of Forecasting, 38(3), 705871.Google Scholar
Reizenstein, J.F. and Graham, B. (2020) Algorithm 1004: The iisignature library: Efficient calculation of iterated-integral signatures and log signatures. ACM Transactions on Mathematical Software, 46(1), Art. 8, 21. ISSN 0098-3500,1557-7295.Google Scholar
Sen, P.K. (1977) Almost sure convergence of generalized U-statistics. Annals of Probability, 5(2), 287290. ISSN 0091-1798.10.1214/aop/1176995853CrossRefGoogle Scholar
Smith, G.D. (1985) Numerical Solution of Partial Differential Equations, 3rd ed. Oxford Applied Mathematics and Computing Science Series. New York: The Clarendon Press, Oxford University Press. ISBN 0-19-859641-3; 0-19-859650-2. Finite difference methods.Google Scholar
US Bureau of Labor Statistics. (2023) Consumer price index for all urban consumers, U.S. city average, all items. https://www.bls.gov/cpi/data.htm. Accessed on: 2023-01-27.Google Scholar
Wang, X., Xiao, W. and Yu, J. (2023) Modeling and forecasting realized volatility with the fractional ornstein–uhlenbeck process. Journal of Econometrics, 232(2), 389415.10.1016/j.jeconom.2021.08.001CrossRefGoogle Scholar
Young, L.C. (1936) An inequality of the Hölder type, connected with Stieltjes integration. Acta Mathematica, 67(1), 251282. ISSN 0001-5962.Google Scholar
Zhu, X., Hardy, M.R. and Saunders, D. (2018) Dynamic hedging strategies for cash balance pension plans. Astin Bulletin, 48(3), 12451275. ISSN 0515-0361.10.1017/asb.2018.9CrossRefGoogle Scholar
Supplementary material: File

Andrès et al. supplementary material 1

Andrès et al. supplementary material
Download Andrès et al. supplementary material 1(File)
File 425 KB
Supplementary material: File

Andrès et al. supplementary material 2

Andrès et al. supplementary material
Download Andrès et al. supplementary material 2(File)
File 9.9 KB