Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T23:50:34.635Z Has data issue: false hasContentIssue false

Flood pulse effects on benthic invertebrate assemblages in the hypolacustric interstitial zone of Lake Constance

Published online by Cambridge University Press:  24 July 2012

Get access

Abstract

In contrast to rivers, the effects of water level fluctuations on the biota are severely understudied in lakes. Lake Constance has a naturally pulsing hydrograph with average amplitudes of 1.4 m between winter drought and summer flood seasons (annual flood pulse (AFP)). Additionally, heavy rainstorms in summer have the potential to create short-term summer flood pulses (SFP). The flood pulse concept for lakes predicts that littoral organisms should be adapted to the regularly occurring AFP, i.e. taking advantage of benefits such as an influx of food sources and low predator pressure, though these organisms will not possess adaptations for the SFP. To test this hypothesis, we studied the aquatic invertebrate assemblages colonizing the gravel sediments of Lake Constance, the AFP in spring and a dramatic SFP event consisting of a one meter rise of water level in 24 h. Here, we introduce the term ‘hypolacustric interstitial’ for lakes analog to the hyporheic zone of running water ecosystems. Our results confirm the hypothesis of contrasting effects of a regular AFP and a random SFP indicating that the AFP enhances the productivity and biodiversity of the littoral zone with benthic invertebrates displaying an array of adaptations enabling them to survive. The littoral zones of lakes deliver important ecosystem services by regulating flood effects, producing biomass and supporting biodiversity. To maintain and foster these services, the maintenance or reintroduction of natural water level fluctuations and the conservation of the habitat structures of the hypolacustric interstitial are urgently needed.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adis, J., 1997. Terrestrial invertebrates: survival strategies, group spectrum, dominance and activity patterns. In: Junk, W.J. (ed.), The Central Amazonian Floodplain: Ecology of a Pulsing System, Springer, Berlin, Heidelberg, New York, pp. 299318.CrossRefGoogle Scholar
Adis, J. and Junk, W.J., 2002. Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: a review. Freshwater Biol., 47, 71131.CrossRefGoogle Scholar
Adis, J., Marques, M.I. and Wantzen, K.M., 2001. First observations on the survival strategies of terricolous arthropods in the northern Pantanal wetland of Brazil. Andrias, 15, 12728.Google Scholar
Aroviita, J. and Hämäläinen, H., 2008. The impact of water-level regulation on littoral macroinvertebrate assemblages in boreal lakes. Hydrobiologia, 613, 4556.CrossRefGoogle Scholar
Arscott, D.B., Tockner, K. and Ward, J.V., 2001. Thermal heterogeneity along a braided floodplain river (Tagliamento River, northeastern Italy). Can. J. Fish. Aquat. Sci., 58, 235973.CrossRefGoogle Scholar
Balogh, C., Muskó, I.B., Tóth, L.G. and Nagy, L., 2008. Quantitative trends of zebra mussels in Lake Balaton (Hungary) in 2003–2005 at different water levels. In: Wantzen, K.M., Rothhaupt, K.-O., Mörtl, M., Cantonati, M., Tóth, L.G. and Fischer, P. (eds.), Ecological Effects of Water-Level Fluctuations in Lakes, Springer, Netherlands, pp. 5769.CrossRefGoogle Scholar
Bastow, J.L., Sabo, J.L., Finlay, J.C. and Power, M.E., 2002. A basal aquatic-terrestrial trophic link in rivers: algal subsidies via shore-dwelling grasshoppers. Oecologia, 131, 26168.CrossRefGoogle ScholarPubMed
Baumgaertner, D., Moertl, M. and Rothhaupt, K.H., 2008. Effects of water-depth and water-level fluctuations on the macroinvertebrate community structure in the littoral zone of Lake Constance. Hydrobiologia, 613, 97107.CrossRefGoogle Scholar
Bayley, P.B., 1995. Understanding large river-floodplain ecosystems. BioScience, 45, 15358.CrossRefGoogle Scholar
Furey, P.C., Nordin, R.N. and Mazumder, A., 2006. Littoral Benthic Macroinvertebrates under Contrasting Drawdown in a Reservoir and a Natural Lake. J. N. Am. Benth. Soc., 25, 1931.CrossRefGoogle Scholar
Gafny, S., Gasith, A. and Goren, M., 1992. Effect of water level fluctuation on shore spawning of  Mirogrex terraesanctae  (Steinitz), (Cyprinidae) in Lake Kineret, Israel. J. Fish Biol., 41, 86371.CrossRefGoogle Scholar
Gérard, C., 2001. Consequences of a drought on freshwater gastropod and trematode communities. Hydrobiologia, 459, 918.CrossRefGoogle Scholar
Humpesch, U.H., 1980. Effect of temperature on the hatching time of eggs of five Ecdyonurus spp. (Ephemeroptera) from Austrian streams and English streams, rivers and lakes. J. Animal Ecol., 49, 31733.CrossRefGoogle Scholar
Hunt, P.C. and Jones, J.W., 1972. The effect of water level fluctuations on a littoral fauna. J. Fish Biol., 4, 38594.CrossRefGoogle Scholar
Junk, W.J., Bayley, P.B. and Sparks, R.E., 1989. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci., 106, 11027.Google Scholar
Junk, W.J. and Wantzen, K.M., 2004. The Flood Pulse Concept: New Aspects, Approaches, and Applications – an Update. In: Welcomme, R. and Petr, T. (eds.), Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries. Food and Agriculture Organization & Mekong River Commission. FAO Regional Office for Asia and the Pacific, Bangkok. RAP Publication 2004/16, pp. 11749.Google Scholar
Junk, W.J. and Wantzen, K.M., 2006. Flood pulsing, and the development and maintenance of biodiversity in floodplains, In: Batzer, D.P. and Sharitz, R.R. (eds.), Ecology of Freshwater and Estuarine Wetlands, University of California Press, Berkeley, CA, pp. 407435.Google Scholar
Korn, M., 2001. Verteilungs- und Bewegungsmuster von benthischen Invertebraten im Litoral des Bodensees, University of Constance, Germany.Google Scholar
Lencioni, V., 2004. Survival strategies of freshwater insects in cold environments. J. Limnol., 63, 4555.CrossRefGoogle Scholar
Marmonier, P., Delettre, Y., Lefebvre, S., Guyon, J., Boulton, A., 2004. A simple technique using wooden stakes to estimate vertical patterns of interstitial oxygenation in the beds of rivers. Arch. Hydrobiol., 160, 13343.CrossRefGoogle Scholar
Marten, M., 1990. Interspecific variation in temperature dependence of egg development of five congeneric stonefly species (Protonemoura Kempny, 1898, Nemoura, Plecoptera). Hydrobiologia, 199, 15771.CrossRefGoogle Scholar
Nagell, B., Fagerstrom, T., 1978. Adaptations and resistance to anoxia in Cloeon dipterum (Ephemeroptera) and Nemoura cinerea (Plecoptera). Oikos, 30, 9599.CrossRefGoogle Scholar
Nolte, U., 1988. Small water colonization in pulse stable varzea and constant terra firme biotopes on the neotropics. Arch. Hydrobiol., 113, 54150.Google Scholar
Olsson, T.I., 1981. Overwintering of benthic macroinvertebrates in ice and frozen sediment in a North Swedish river. Ecography, 4, 16166.CrossRefGoogle Scholar
Olsson, T.I., 1984. Winter sites and cold-hardiness of two gastropod species in a boreal river. Polar Biol., 3, 22730.CrossRefGoogle Scholar
Orghidan, T., 1959. Ein neuer Lebensraume des unterirdischen Wassers: der Hyporheische Biotope. Arch. Hydrobiol., 55, 393414.Google Scholar
Pabst, S., Scheifhacken, N., Hesselschwerdt, J., Wantzen, K.M., 2008. Leaf litter degradation in the wave impact zone of a pre-alpine lake. Hydrobiologia, 613, 11731.CrossRefGoogle Scholar
Paetzold, A., Schubert, C.J., Tockner, K., 2005. Aquatic terrestrial linkages along a braided-river: Riparian arthropods feeding on aquatic insects. Ecosystems, 8, 74859.CrossRefGoogle Scholar
Pennak, R.W., 1940. Ecology of the microscopic Metazoa inhabiting the sandy beaches of some Wisconsin lakes. Ecol. Monogr., 10, 32848.CrossRefGoogle Scholar
Remane, A., 1952. Die Besiedlung des Sandbodens der Meere und die Bedeutung der Lebensformtypen für die Ökologie. Zool. Anz. Suppl., 16, 32759.Google Scholar
Sabo, M.J., Bryan, C.F., Kelso, W.E., Rutherford, A., 1999. Hydrology and aquatic habitat characteristics of a riverine swamp: II. Hydrology and the occurrence of chronic hypoxia. Reg. Rivers-Res. Mgmt, 15, 52542.3.0.CO;2-Q>CrossRefGoogle Scholar
Scheifhacken, N., Fiek, C. and Rothhaupt, K.-O., 2007. Complex spatial and temporal patterns of littoral benthic communities interacting with water level fluctuations and wind exposure in the littoral zone of a large lake. Fundam. Appl. Limnol., 169, 11529.CrossRefGoogle Scholar
Schwoerbel, J., 1961. Über die Lebensbedingungen und die Besiedlung des hyporheischen Lebensraumes. Arch. Hydrobiol. Suppl., 25, 162214.Google Scholar
Steinhart, M., 1999. Die Chironomiden des Unteren Odertals - Untersuchung möglicher Adaptationen an das Überflutungsgeschehen. In: Dohlenkamp, E. and Weigmann, R. (eds.) Limnologie Aktuell, 9, Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart, pp. 337351.Google Scholar
Timm, T., 1996. Oligochaeta of Lake Taimyr: a preliminary survey. Hydrobiologia, 334, 8995.CrossRefGoogle Scholar
Tockner, K., Lorang, M.S., Stanford, J.A., 2010. River flood plains are model ecosystems to test general hydrogeomorphic and ecological concepts. Riv. Res. Appl., 26, 7686.CrossRefGoogle Scholar
Wantzen, K.M. and Junk, W.J., 2000. The importance of stream-wetland-systems for biodiversity: a tropical perspective. In: Gopal, B., Junk, W.J. and Davies, J.A. (eds.), Biodiversity in Wetlands: Assessment, Function and Conservation, Backhuys, Leiden, The Netherlands, pp. 1134.Google Scholar
Wantzen, K.M., Machado, F.A., Voss, M., Boriss, H., Junk, W.J., 2002. Floodpulse-induced isotopic changes in fish of the Pantanal wetland, Brazil. Aquat. Sci., 64, 23951.CrossRefGoogle Scholar
Wantzen, K.M., Junk, W.J., 2006. Aquatic-terrestrial linkages from streams to rivers: biotic hot spots and hot moments. Large Rivers, 16, 595611.Google Scholar
Wantzen, K.M., Junk, W.J., Rothhaupt, K.H. 2008a. An extension of the floodpulse concept (FPC) for lakes. Hydrobiologia, 613, 151170.CrossRefGoogle Scholar
Wantzen, K.M., Rothhaupt, K.O., Mörtl, M., Cantonati, M., Tóth, L., Fischer, P., 2008b. Ecological effects of water-level fluctuations in lakes: An urgent issue. Hydrobiologia, 613, 14.CrossRefGoogle Scholar
Ward, J.V., 1989. The four-dimensional nature of lotic ecosystems. J. N. Am. Benth. Soc., 8, 28.CrossRefGoogle Scholar
Weigman, G. and Wohlgemut von Reiche, D., 1999. Vergleichende Betrachtung zu den Überlebensstrategien von Bodentieren im Überlebensbereich von Tieflandauen. Limnol. Aktuell, 9, 303317.Google Scholar
White, D.S., Miller, M.F., 2008. Benthic invertebrate activity in lakes: linking present and historical bioturbation patterns. Aquat. Biol., 29, 26977.Google Scholar
Williams, D.D., 2000. The Biology of Temporary Waters. Oxford University Press, London.Google Scholar

OLM limn110032- Food pulse...

Appendix

Download OLM limn110032- Food pulse...(Audio)
Audio 46.8 KB