Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-08T01:16:14.191Z Has data issue: false hasContentIssue false

Plains-Pueblo Interdependence and Human Diet at Pecos Pueblo, New Mexico

Published online by Cambridge University Press:  20 January 2017

Katherine A. Spielmann
Affiliation:
Department of Anthropology, Arizona State University, Tempe, AZ 85287
Margaret J. Schoeninger
Affiliation:
Department of Anthropology, University of Wisconsin, Madison, WI 53706
Katherine Moore
Affiliation:
Department of Behavioral Sciences, Bentley College, Waltham, MA 02154

Abstract

Using bone-chemistry data, this project sought to assess the degree of dietary change that occurred among eastern border Pueblo populations due to prehistoric food exchange with hunter-gatherers on the Plains and to the arrival of Spanish colonists. In so doing we introduce a technique for dietary reconstruction that determines the range of diets compatible with bone-chemistry data from a particular population. The data are derived from samples of modern and archaeological plants and animals collected from the area surrounding Pecos Pueblo, and from archaeological humans recovered from Pecos itself. Bone-strontium concentrations were measured to monitor the relative proportions of meat to vegetables in the diet. Carbon and nitrogen stable-isotope ratios in food items and in bone collagen were measured to monitor the dependence on maize and bison meat. The results do not provide support for the hypothesis that bison replaced mule deer in the diet during the period of significant Plains-Pueblo trade. If bison, whose diets are relatively enriched in 13C had replaced mule deer, an increase in average δ13C values should have occurred. This, however, was not observed. A decrease in carbon-isotope values in the historic period suggests that either bison meat or maize or both decreased in importance in the Pecos diet and that dependence on wild plants increased.

Résumé

Résumé

En base a datos químicos defragmentos óseos se intentó determinar el grado en el que cambió la dieta entre las poblaciones Pueblo del este, debido al intercambio con cazadores y recolectores prehistóricos y al impacto de la llegada de colonizadores españoles. Con esto se presenta una técnica para reconstruir dietas que permite determinar un cierto rango de dietas compatibles con la composición química defragmentos óseos de una población determinada. Los datos fueron obtenidos del análisis de flora y fauna contemporáneas al igual que de especímenes encontrados en localidades arqueológicas en el área circumvecina a Pecos Pueblo. Además, se analizaron restos óseos humanos de la misma zona arqueológica de Pecos. Se midieron las concentraciones de Estroncio para controlar las proporciones relativas de came y vegetales en la dieta. Así mismo fueron medidas las proporciones de los isótopos estables de Nitrógeno y Carbono en productos alimenticios y calógeno óseo para determinar la dependencia de la dieta en maíz y came de bisonte. Los resultados no dan soporte a la hipótesis de que la came de bisonte sustituyó a la del venado cariacú en la dieta durante el período en el cual el comercio entre los pobladores de los llanos y los indios Pueblo fue significativo. Como la dieta de bisonte está relativamente enriquecida en 13C, un aumento del promedio en δ13C debería haber ocurrido en caso de que éste sustituyera al venado cariacú. Pero éste no es el caso. El decrecimiento de las proporciones de los isótopos de Carbono durante el período histórico sugiere una disminución en importancia de la came de bisonte, o del maíz, o ambos en la dieta de los habitantes de Pecos, mientras que la dependencia en plantas silvestres se incrementó.

Type
Articles
Copyright
Copyright © The Society for American Archaeology 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ambrose, S. H., and DeNiro, M. J. 1986 The Isotopic Ecology of East African Mammals. Oecologia 69: 395406.Google Scholar
Bender, M. M., Baerreis, D. A., and Stevenson, R. L. 1981 Further Light on Carbon Isotopes and Hopewell Agriculture. American Antiquity 46: 346353.Google Scholar
Binford, L. R. 1978 Nunamiut Ethnoarchaeology. Academic Press, New York.Google Scholar
Boutton, T. W., Harrison, A. T., and Smith, B. N. 1980 Distribution of Biomass of Species Differing in Photosynthetic Pathway Along an Altitudinal Transect in Southeastern Wyoming Grassland. Oecologia 45: 287298.CrossRefGoogle ScholarPubMed
Brown, A. B. 1973 Bone Strontium Content as a Dietary Indicator in Human Skeletal Populations. Unpublished Ph. D. dissertation, Department of Anthropology, University of Michigan, Ann Arbor.Google Scholar
Bumstead, M. P. 1983 Adult Variation in 13C: Pre-Columbian North America. American Journal of Physical Anthropology 60: 178179.Google Scholar
Catlin, G. 1965 Letters and Notes on the Manners, Customs, and Conditions of the North American Indians. Ross and Haines, Minneapolis.Google Scholar
Comar, C. L, and Wasserman, R. H. 1964 Strontium. In Mineral Metabolism, vol. 2, part A, edited by Comar, C. L. and Bronner, F., pp. 523572. Academic Press, New York.Google Scholar
Cordell, L. S. 1979 Cultural Resources Overview, Middle Rio Grande Valley, New Mexico. Submitted to USDA Forest Service, Bureau of Land Management, Albuquerque. Copies available from Superintendent of Documents, U. S. Government Printing Office, Washington, DC 20402.Google Scholar
Dean, J. S., and Robinson, W. J. 1977 Dendroclimatic Variability in the American Southwest, A. D. 680 to 1970. Laboratory of Tree-Ring Research, University of Arizona. Submitted to the National Park Service, Contract No. CX-1595-5-0241. Copies available from Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ 85721.Google Scholar
Denig, E. 1930 Indian Tribes of the Upper Missouri. Bureau of American Ethnology Bulletin No. 46: 375628. U. S. Government Printing Office, Washington, D. C. Google Scholar
DeNiro, M. J., and Epstein, S. 1978 Influence of Diet on the Distribution of Carbon Isotopes in Animals. Geochimica et Cosmochimica Acta 42: 495506.CrossRefGoogle Scholar
DeNiro, M. J., and Epstein, S. 1981 Influence of Diet on the Distribution of Nitrogen Isotopes in Animals. Geochimica et Cosmochimica Acta 45: 341351.Google Scholar
DeNiro, M. J., and Schoeninger, M. J. 1983 Stable Carbon and Nitrogen Isotope Ratios of Bone Collagen: Variations Within Individuals, Between Sexes, and Within Populations Raised on a Monotonous Diet. Journal of Archaeological Science 10: 199203.CrossRefGoogle Scholar
Farnsworth, P., Brady, J. E., DeNiro, M. J., and Neish, R. S. Mac 1985 A Re-evaluation of the Isotopic and Archaeological Reconstruction of Diet in the Tehuacan Valley. American Antiquity 50: 102116.CrossRefGoogle Scholar
Grupe, G. 1988 Impact of the Choice of Bone Samples on Trace Element Data in Excavated Human Skeletons. Journal of Archaeological Science 15: 123129.CrossRefGoogle Scholar
Hammond, G. P., and Rey, A. 1953 Don Juan de Onate, Colonizer of New Mexico. Coronado Cuarto Centennial Publication, vols. 5 and 6. University of New Mexico Press, Albuquerque.Google Scholar
Hammond, G. P., and Rey, A. 1966 The Rediscovery of New Mexico, 1580-1594. University of New Mexico Press, Albuquerque.Google Scholar
Hanson, D., and Buikstra, J. E. 1987 Histomorphological Alteration in Buried Human Bone from the Lower Illinois Valley: Implications for Palaeodietary Research. Journal of Archaeological Science 14: 549563.CrossRefGoogle Scholar
Hatch, J. W., and Geidel, A. A. 1985 Status-Specific Dietary Variation in Two World Cultures. Journal of Human Evolution 14: 469476.CrossRefGoogle Scholar
Heaton, T. H. E., Vogel, J. C., von la Chevallerie, G., and Gollett, G. 1986 Climatic Influence on the Isotopic Composition of Bone Nitrogen. Nature 322: 822823.Google Scholar
Hooton, E. A. 1930 The Indians of Pecos Pueblo. Yale University Press, New Haven.Google Scholar
Kessell, J. L. 1979 Kiva, Cross, and Crown. National Park Service, Washington.Google Scholar
Kidder, A. V. 1924 An Introduction to the Study of Southwestern Archaeology. Papers of the Southwestern Expedition 1. Phillips Academy, Andover.Google Scholar
Kidder, A. V. 1932 Artifacts of Pecos. Papers of the Southwestern Expedition 6. Phillips Academy, Andover.Google Scholar
Klein, R. G., and Cruz-Uribe, K. 1984 The Analysis of Animal Bones from Archaeological Sites. University of Chicago Press, Chicago.Google Scholar
Lambert, J. B., Szpunar, C. B., and Buikstra, J. E. 1979 Chemical Analysis of Excavated Human Bone from Middle and Late Woodland Sites. Archaeometry 21: 115129.CrossRefGoogle Scholar
Lang, R. W., and Harris, A. H. 1984 The Faunal Remains from Arroyo Hondo Pueblo, New Mexico. Arroyo Hondo Archaeological Series Vol. 5. School of American Research Press, Santa Fe.Google Scholar
Lehninger, A. L. 1975 Biochemistry: The Molecular Basis of Cell Structure and Function. Worth, New York.Google Scholar
Lynott, M. J., Boutton, T. W., Price, J. E., and Nelson, D. E. 1986 Stable Carbon Isotopic Evidence for Maize Agriculture in Southeastern Missouri and Northeastern Arkansas. American Antiquity 51: 5165.CrossRefGoogle Scholar
Medaglia, C, Little, E. A., and Schoeninger, M. J. 1989 Late Woodland Diet on Nantucket Island (Massachusetts): A Study Using Stable Isotope Ratios. Paper presented at the 54th Annual Meeting of the Society for American Archaeology, Atlanta.Google Scholar
Minnis, P. E. 1985 Social Adaptations to Food Stress. University of Chicago Press, Chicago.Google Scholar
Moore, K., Murray, M., and Schoeninger, M. J. 1989 Effects of Preservatives on Trace Element and Stable Isotope Analysis of Bone. Journal of Archaeological Science 16: 437446.Google Scholar
Norr, L. 1981 Prehistoric Costa Rican Diet as Determined from Stable Carbon Isotope Ratios in Bone Collagen. American Journal of Physical Anthropology 54: 258259.Google Scholar
Price, T. D. (editor) 1989 Chemistry of Prehistoric Human Bone. Cambridge University Press, Cambridge.Google Scholar
Rose, M. R., Dean, J. S., and Robinson, W. J. 1981 The Past Climate of Arroyo Hondo New Mexico, Reconstructed from Tree Rings. Arroyo Hondo Archaeological Series Vol. 4. School of American Research Press, Santa Fe.Google Scholar
Rue, L. L. 1978 The Deer of North America. Outdoor Life Books, Crown, New York.Google Scholar
Ruff, C. B. 1981 A Reassessment of Demographic Estimates for Pecos Pueblo. American Journal of Physical Anthropology 54: 147151.CrossRefGoogle Scholar
Schoeninger, M. J. 1979 Diet and Status at Chalcatzingo: Some Empirical and Technical Aspects of Strontium Analysis. American Journal of Physical Anthropology 51: 295309.Google Scholar
Schoeninger, M. J. 1981 The Agricultural “Revolution“: Its Effect on Human Diet in Prehistoric Iran and Israel. Paleorient 1: 1192.Google Scholar
Schoeninger, M. J. 1985 Trophic Level Effects on 15N/14N and 13C/12C Ratios in Bone Collagen and Strontium Levels in Bone Material. Journal of Human Evolution 14: 515525.CrossRefGoogle Scholar
Schoeninger, M. J. 1989 Reconstructing Prehistoric Human Diet. In Chemistry of Prehistoric Human Bone, edited by Price, T. D., pp. 3867. Cambridge University Press, Cambridge.Google Scholar
Schoeninger, M. J., and DeNiro, M. J. 1982 Diagenetic Effects on Stable Isotope Ratios in Bone Apatite and Collagen. American Journal of Physical Anthropology 57: 225.Google Scholar
Schoeninger, M. J., and DeNiro, M. J. 1984 Nitrogen and Carbon Isotope Ratios of Bone Collagen Reflect Marine and Terrestrial Components of Prehistoric Human Diet. Geochimica et Cosmochimica Acta 48: 625639.CrossRefGoogle Scholar
Schoeninger, M. J., DeNiro, M. J., and Tauber, H. 1983 15N/'4N Ratios of Bone Collagen Reflect Marine and Terrestrial Components of Prehistoric Diets. Science 220: 13811383.Google Scholar
Schoeninger, M. J., Moore, K. M., and Murray, M. L. 1989 Detection of Bone Preservation in Archaeological and Fossil Samples. Journal of Applied Geochemistry 4: 281292.Google Scholar
Scholes, F. V. 1936-1937 Church and State in New Mexico, 1610-1650. New Mexico Historical Review ll(l): 9-76, 11(2): 145-178, ll(3): 283-294, 11(4): 297-349; 12(1): 78106.Google Scholar
Schwarcz, H. P., Melbye, J., Katzenberg, M. A., and Knyf, M. 1985 Stable Isotopes in Human Skeletons of Southern Ontario: Reconstructing Paleodiet. Journal of Archaeological Science 12: 187206.CrossRefGoogle Scholar
Sealy, J. C., van der Merwe, N. J., Lee Thorp, J. A., and Lanham, J. L. 1987 Nitrogen Isotopic Ecology in Southern Africa: Implications for Environmental and Dietary Tracing. Geochimica et Cosmochimica Acta 51: 27072717.Google Scholar
Sillen, A., and Kavanagh, M. 1982 Strontium and Paleodietary Research: A Review. Yearbook of Physical Anthropology 25: 6790.CrossRefGoogle Scholar
Sillen, A., Sealy, J. C., and Merwe, N. van der 1989 Chemistry and Paleodietary Research: No More Easy Answers. American Antiquity 54: 504512.CrossRefGoogle Scholar
Sokolov, R. 1986 The Good Seed. Natural History 4/86: 102105.Google Scholar
Spielmann, K. A. 1982 Inter-Societal Food Acquisition among Egalitarian Societies: An Ecological Analysis of Plains/Pueblo Interaction in the American Southwest. Unpublished Ph. D. dissertation, Department of Anthropology, University of Michigan, Ann Arbor.Google Scholar
Spielmann, K. A. 1983 Late Prehistoric Exchange Between the Southwest and Southern Plains. Plains Anthropologist 28: 257272.CrossRefGoogle Scholar
Spielmann, K. A. 1988 Changing Faunal Procurement Strategies at Gran Quivira Pueblo, New Mexico. Paper presented at the 53rd Annual Meeting of the Society for American Archaeology, Phoenix.Google Scholar
Spielmann, K. A. 1989 Colonists, Hunters, and Farmers: Plains-Pueblo Interaction in the Seventeenth Century. In Columbian Consequences, vol. 1, edited by Thomas, D. H., pp. 101113. Smithsonian Institution Press, Washington, D. C. Google Scholar
Stout, S. 1978 Histological Structure and Its Preservation in Ancient Bone. Current Anthropology 19: 601604.Google Scholar
Styles, R. 1986 Faunal Exploitation and Resource Selection. Scientific Papers No. 3. Archeological Program, Northwestern University, Evanston, Illinois, Google Scholar
van der Merwe, N. J., and Vogel, J. C. 1978 L3C Content of Human Collagen as a Measure of Prehistoric Diet in Woodland North America. Nature 276: 815816.CrossRefGoogle Scholar
Van Dyne, G. M. 1973 Analysis of Structure, Function and Utilization of Grassland Ecosystems, vol. 2. Progress Report submitted to the National Science Foundation. Ms. in possession of authors.Google Scholar
Virginia, R. A., and Delwiche, C. C. 1982 Natural “N Abundance of Presumed N2-fixing and Non-N2-fixing Plants from Selected Ecosystems. Oecologia 54: 317325.CrossRefGoogle Scholar
Vogel, J. C. 1978 Isotopic Assessment of the Dietary Habits of Ungulates. South African Journal of Science 74: 298301.Google Scholar
Vogel, J. C, and Merwe, N. J. van der 1977 Isotopic Evidence for Early Maize Cultivation in New York State. American Antiquity 42: 238242.Google Scholar
Wada, E. 1980 Nitrogen Isotope Fractionation and Its Significance in Biogeochemical Processes Occurring in Marine Environments. In Isotope Marine Chemistry, edited by Goldberg, E. D., Horibe, V., and Saruhashi, K., pp. 375398. Uchida Rokakuho, Tokyo.Google Scholar
Wada, E., Kadonaga, T., and Matusuo, S. 19755N Abundance in Nitrogen of Naturally Occurring Substances and Global Assessment of Denitrification from Isotopic Viewpoint. Geochemical Journal 9: 139148.Google Scholar
Watt, B. K., and Merrill, A. L. 1973 Handbook of the Nutritional Contents of Foods. Dover, New York.Google Scholar
Weltfish, G. 1965 The Lost Universe: Pawnee Life and Culture. University of Nebraska Press, Lincoln.Google Scholar
Wetterstrom, W. 1986 Food, Diet, and Population at Prehistoric Arroyo Hondo Pueblo, New Mexico. Arroyo Hondo Archaeological Series Vol. 6. School of American Research Press, Santa Fe.Google Scholar
Winship, G. P. 1896 The Coronado Expedition, 1540-1542. Bureau of American Ethnology Annual Report, part 2. Smithsonian Institution, Washington, D. C.Google Scholar