Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T23:19:36.252Z Has data issue: false hasContentIssue false

A Novel X-Ray Powder-Diffractometer, Measuring Preferred-Orientations

Published online by Cambridge University Press:  06 March 2019

Geert Brouwer*
Affiliation:
Philips Research Laboratories, Eindhoven / I&E, Almelo The Netherlands
Get access

Extract

The instrument employs a fully-focussing optical system which allows a wide range of sample-orientations and thus permits determination of the preferred-orientation distribution-function. Hence, measured peak-intensifies can be corrected for non-randomness.

The sample performs a planetary motion around the focus of the primary, monochromatic beam. The angle of incidence can be varied over a wide range of values, including both transmission and reflection. The sample can be rotated in its own plane in a controlled manner. Full illumination is obtained in any position of the sample. The diameter of the Rowland-sphere of the powder-optics remains constant and permits the use of a sphericai sample-layer.

Type
VI. XRD Techniques, Instrumentation and P.C. Applications
Copyright
Copyright © International Centre for Diffraction Data 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Seemann, H., “Eine fokussierende rontgenspektroskopische Anordnung fiir Kristallpulver”, Ann. Phys. Lpz., S9, 455, 1919.Google Scholar
2. Bohlin, H., “Anordnung fur rontgenkristallographische Untersuchungen von Kristallpulver”, Ann. Phys. Lpz., 61, 421, 1920.Google Scholar
3. Guinier, A., “La diffraction des rayons X aux trfcs petits angles: applications a 1'etude de phenomfenes ultramicroscopiques”, Ann. Phys. Paris, 12, 161, 1939.Google Scholar
4. Wassermann, G. and Wiewiorosky, J., “Uber ein Geiger-Zahlrohr-Goniometer nach dem Seemann-Bohlin-Prinzip”, Z. Metallk. 44, 567, 1953,Google Scholar
5. Hoffmann, E.G. and Jagodzinsky, H., “Eine neue, hochauflosende Rontgenfeinstruktur- Anlage mit verbessertem, fokussierendem Monochromator und Feinfokusrohre”, Z. Metallk. 46, 601, 1955.Google Scholar
6. Segmiüler, A., ‘’Die Bestimmung von Glanzwinkeln, Linienbreiten und Intensitaten der Ro ntge n-1 nte rfe re nzen mit einem Geiger-Zahlrohr-Goniometer nach dem Seemann- Bohlin-Prinzip”, Z. Metallk. 48, 448,1957.Google Scholar
7. Mack, M. and Parrish, W, “Seemann-Bohlin X-ray diff ractometry”, Acta Cryst. 23, 693, 1967.Google Scholar
8. King, H.W., Gillham, C.J. and Huggins, F.G., “A versatile Bragg-Brentano/Seemann- Bohlin powder diffractometer”, Advanc. X-ray Anal., 13, 550, 1970.Google Scholar
9. Byram, S.K., Bui Han, Rothbart, G.B., Samdahl, R.N. and Sparks, R.A., “A noval X-ray powder diffractometer detector system”, Advanc. X-ray Anal., 20, 529, 1977.Google Scholar
10. Gobel, H.E., “A new method for fast XRPD using a position sensitive detector”, Advanc. X-ray Anal., 22, 255, 1977.Google Scholar
11. Gobel, H.E., ‘’The use and accuracy of continuously scanning position sensitive detector data in X-ray powder diffraction”, Advanc. X-ray Anal., 24, 123, 1981.Google Scholar