Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-18T09:15:39.419Z Has data issue: false hasContentIssue false

Application of a Low Energy X-Ray Spectrometer to Analyses of Suspended Air Particulate Matter

Published online by Cambridge University Press:  06 March 2019

R. D. Giauque
Affiliation:
Lawrence Berkeley Laboratory Berkeley, California 94720
R. B. Garrett
Affiliation:
Lawrence Berkeley Laboratory Berkeley, California 94720
L. Y. Goda
Affiliation:
Lawrence Berkeley Laboratory Berkeley, California 94720
J. M. Jaklevic
Affiliation:
Lawrence Berkeley Laboratory Berkeley, California 94720
D. F. Malone
Affiliation:
Lawrence Berkeley Laboratory Berkeley, California 94720
Get access

Abstract

A semiconductor detector x-ray spectrometer has been constructed for the analysis of elements in air particulate specimens. The excitation radiation is provided, either directly or indirectly, using a low power (40 watts) Ag anode x-ray tube. Less than 100 ng for most of the elements in the range Mg → Zr, Pb are easily detected within two 1-minute counting intervals. A calibration technique for light element analysis and an experimental method which compensates for particle size effects will be discussed.

Type
X-Ray Spectrometry in Environmental Analysis
Copyright
Copyright © International Centre for Diffraction Data 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jaklovic, J.M., Goulding, F.S., Jarrett, B.V., and Meng, J.D., “Application of X-Ray Fluorescence Techniques to Measure Elemental Composition of Particles In the Atmosphere”, in Stevens, R.K. and Herget, W.F., Editors, Analytical Methods.Applied to Air-Pollution Mea, surements, p. 123146, Ann Arbor.Science Publishers, Inc, (1974).Google Scholar
2. Flocchini, R.G., Shadoan, D.J., Cahill, T.A., Eldred, R.A., Feeney, P. J., and Wolfe, G., “Energy, Aerosols and Ion-Excited X-Ray Emissions”, in Pickles, W.L., Editor, Advances in X-Ray Analysis, Vol. 18, p. 579587, Plenum Press (1975).Google Scholar
3. Akselsson, R., Orsini, C., Meinert, D.L., Johansson, T.B., Grieken, R.E. Van, Kaufmann, H.C., Chapman, K.R., Nelson, J.W., and Winchester, J.W., “Application of Proton Induced X-Ray Emission Analysis to the St. Louis Regional Air Pollution Study”, Ref. 2, p.588597.Google Scholar
4. Birks, L.S., Gilfrich, J.V., and Burkhalter, P.G., “Development of X-Ray Fluorescence Spectroscopy for Elemental Analysis of Particulate Matter in the Atmosphere and in Source Emissions”, Environmental Protection Agency Report, EPA-R2-72-063 (1972).Google Scholar
5. Rhodes, J.R., A.H. Pradzynski, , Hunter, C.B., Payne, J.S., and Lindgren, J.L., “Energy Dispersive X-Ray Fluorescence Analysis of Air Particulates in Texas,” Environmental Sci. Tech., 6 (10), p. 922927 (1972).Google Scholar
6. Dzubay, T.C. and Stevens, R.K., “Application of X-Ray Fluorescence to Particulate Measurements”, Inst. Soc. Amer. JSP 6695, p. 211-216 (1973).Google Scholar
7. Bonner, N.A., Bazan, F., and Camp, D.C., “Elemental Analysis of Air Filter Samples Using X-Ray Fluorescence”, Lawrence Livermore Laboratory Report, UCRL-51388, Livermore, Calif. (1973).Google Scholar
8. Giauque, R.D., Goda, L.Y., Garrett, R.B., “X-Ray Induced X-Ray Fluorescence Analysis of Suspended Air Particulate Matter”, Lawrence Berkeley Laboratory Report LBL-2951, Berkeley, California (1974).Google Scholar
9. Camp, D.C., VanLehn, A.L., Rhodes, J.R., and Pradzynski, A. H., “Intercomparisonof Trace Element Determinations in Simulated and Real Air Particulate Samples”, X-Ray Spectrometry 4, p. 123137 (1975).Google Scholar
10. Rhodes, J.R. and Hunter, C.B., “Particle Size Effects in X-Ray Emission Analyses: Simplified Formulas for Certain Practical Cases”, X-Ray Spectrometry 1, p. 113117 (1972).Google Scholar
11. Dzubay, T.G. and Nelson, R.O., “Self Absorption Corrections for X-Ray Fluorescence Analysis of Aerosols”, Ref. 2, p. 619631.Google Scholar
12. Liebhafsky, H.A., Pfeiffer, J.G., Winslow, E.H., and Zemany, P.D., X-Rays, Electrons, and Analytical Chemistry, Wiley-Interscience (1972).Google Scholar
13. Jenkins, R., An Introduction to X-Ray Spectrometry, Heyden (1974).Google Scholar
14. Birks, L.S., X-Ray Spectrochemical Analysis, Interscience Publishers (1969).Google Scholar
15. McMaster, W.H., Grande, N.K. Del, Mallett, J.H., and Hubbell, J.H., “Compilation of X-Ray Cross Sections”, Univ. of California, Lawrence Laboratory Report UCRL-50174, Section II, Revision I (1969), National Technical Information Service.Google Scholar
16. Dyer, G.R., Gedcke, D.A., and Harris, T.R., “Fluorescence Analysis Using an Si(Li) X-Ray Energy Analysis System with Low-Power X-Ray Tubes and Radioisotopes”, in Heinrich, K.F.J., Editor, Advances in X-Ray Analysis, Vol. 15, p. 228239, Plenum Press (1972).Google Scholar
17. Portor, D.E. and Woldseth, R., “X-Ray Energy Spectrometry”, Anal. Chem. 45, p. 604A614A (1973).Google Scholar
18. Goulding, F.S., Jaklevic, J.M., Jarrett, B.V., and Landis, D.A., “Detector Background and Sensitivity of Semiconductor X-Ray Fluorescence Spectrometers”, Ref. 16, p. 470482.Google Scholar
19. Woldseth, R., X-Ray Energy Spectrometry, published by Kevex Corporation, Burlingame, Calif. (1973).Google Scholar
20. Kothny, E.L., California Department of Public Health, Berkeley, California,private communication, 1973.Google Scholar
21. Giauque, R.D., Goulding, F.S., Jaklevic, J.M., and Pehl, R.H., “Trace Element Determination with Semiconductor Detector X-Ray Spectrometers”, Anal. Chem. 45, p. 671681 (1973).Google Scholar
22. Loo, B.W., Jaklevic, J.M., and Goulding, F.S., “Dichotomous Virtual Impactorsfor Large-Scale Monitoring of Airborne Particulate Matter”, Lawrence Berkeley Laboratory Report LBL-3854, Berkeley, Calif. (1975).Google Scholar
23. Bekowies, P., Lawrence Berkeley Laboratory, Berkeley, Calif., private communication, 1975.Google Scholar