Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-10-31T01:01:21.489Z Has data issue: false hasContentIssue false

Molybdenum as a Paleoredox Proxy

Past, Present, and Future

Published online by Cambridge University Press:  23 August 2021

Stephan R. Hlohowskyj
Affiliation:
Central Michigan University
Anthony Chappaz
Affiliation:
Central Michigan University
Alexander J. Dickson
Affiliation:
Royal Holloway, University of London

Summary

Molybdenum (Mo) is a widely used trace metal for investigating redox conditions. However, unanswered questions remain that concentration and bulk isotopic analysis cannot specially answer. Improvements can be made by combining new geochemical techniques to traditional methods of Mo analysis. In this Element, we propose a refinement of Mo geochemistry within aquatic systems, ancient rocks, and modern sediments through molecular geochemistry (systematically combining concentration, isotope ratio, elemental mapping, and speciation analyses). Specifically, to intermediate sulfide concentrations governing Mo behavior below the 'switch-point' and dominant sequestration pathways in low oxygen conditions. The aim of this work is to 1) aid and improve the breadth of Mo paleoproxy interpretations by considering Mo speciation and 2) address outstanding research gaps concerning Mo systematics (cycling, partitioning, sequestration, etc.). The Mo paleoproxy has potential to solve ever complex research questions. By using molecular geochemical recommendations, improved Mo paleoproxy interpretations and reconstruction can be achieved.
Get access
Type
Element
Information
Online ISBN: 9781108993777
Publisher: Cambridge University Press
Print publication: 09 September 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Recommended Reading

Smedley and Kinniburgh (2017) provide the most extensive review of molybdenum in the natural world from solid to dissolved phases as it cycles in the environment.

Kendall et al. (2017) summarize the major concepts in the use of molybdenum isotopes as a paleoproxy and provide an excellent summary of the current research gaps concerning isotope interpretation.

Dickson (2017) covers the important and recent advances in isotope interpretations from the Phanerozoic and provides a useful synopsis complementing Kendall et al. (2017).

Helz et al. (1996) is likely the most seminal and important paper concerning the use of molybdenum as a paleoproxy. In this article Helz et al. (1996) set the stage for studying the speciation of molybdenum in ancient systems.

Scott et al. (2008) is a seminal paper illustrating the use of the molybdenum paleoproxy to understand Earth’s oxygenation and documents the power of molybdenum as a redox-sensitive tracer of past conditions.

Erickson and Helz (2000) outline the chemistry of molybdenum speciation under sulfidic redox conditions and describe the kinetics of molybdenum thiolation to help interpret both modern and ancient sedimentary systems.

Scott and Lyons (2012) identify the behavior of molybdenum across a range of redox conditions in both sediments and rocks. This paper illustrates the mechanics of molybdenum sequestration under reducing conditions and how geochemical signals can be interpreted for paleoredox reconstruction.

Algeo and Lyons (2006) address the long-standing question of the role of organic matter in association with molybdenum commonly found in ancient rocks. This paper sets the stage for future research into organic matter dynamics relating to molybdenum.

Chappaz et al. (2014) outline the burial pathways for molybdenum sequestration in sediments, commonly thought to be dominated by pyrite precipitation. They highlight current hypotheses for possible molybdenum pathways and postulate on the potential of additional sequestration pathways.

King and Pett-Ridge (2018) describe how Mo sourced from groundwater varies in concentration and isotopic composition compared to riverine inputs. This paper helps improve the understanding of isotopic cycling of Mo, strengthening the usefulness of the Mo paleoproxy by further constraining sources of variation.

Poulson Brucker et al. (2009) show empirical measurements of Mo isotopic values across a wide range of redox regimes. This work is important in that it documents major marine sediment reservoirs of Mo while providing corresponding isotopic values.

Noordmann et al. (2015) describe the importance of uranium geochemistry and its influence on Mo within sulfidic redox systems. Further, their research lays out a foundation concept of the importance of permanent stratification of a basin for the interpretation/reconstruction of paleoredox conditions.

Neely et al. (2018) outline the importance of lesser-studied Mo inputs to the oceanic pool: hydrothermal fluids. Their work demonstrates the need to include increasingly precise, although complex, considerations of all Mo inputs to the ocean budget, since the potential input of hydrothermal fluids is nontrivial.

Smedley, P. L., & Kinniburgh, D. G. (2017). Molybdenum in natural waters: A review of occurrence, distributions and controls. Applied Geochemistry, 84, 387432.Google Scholar
Kendall, B., Dahl, T. W., & Anbar, A. D. (2017). The stable isotope geochemistry of molybdenum. Reviews in Mineralogy and Geochemistry, 82(1), 683732.Google Scholar
Dickson, A. J. (2017). A molybdenum-isotope perspective on Phanerozoic deoxygenation events. Nature Geoscience, 10(10), 721726.Google Scholar
Helz, G. R., Miller, C. V., Charnock, J. M. et al. (1996). Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60(19), 36313642.Google Scholar
Scott, C., Lyons, T. W., Bekker, A. et al. (2008). Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452(7186), 456459.Google Scholar
Erickson, B. E., & Helz, G. R. (2000). Molybdenum (VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochimica et Cosmochimica Acta, 64(7), 11491158.Google Scholar
Scott, C., & Lyons, T. W. (2012). Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chemical Geology, 324, 1927.Google Scholar
Algeo, T. J., & Lyons, T. W. (2006). Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21(1), PA1016, DOI:10.1029/2004PA001112.Google Scholar
Chappaz, A., Lyons, T. W., Gregory, D. D. et al. (2014). Does pyrite act as an important host for molybdenum in modern and ancient euxinic sediments? Geochimica et Cosmochimica Acta, 126, 112122.Google Scholar
King, E. K., & Pett-Ridge, J. C. (2018). Reassessing the dissolved molybdenum isotopic composition of ocean inputs: The effect of chemical weathering and groundwater. Geology, 46(11), 955958.Google Scholar
Poulson Brucker, R. L., McManus, J., Severmann, S., & Berelson, W. M. (2009). Molybdenum behavior during early diagenesis: Insights from Mo isotopes. Geochemistry, Geophysics, Geosystems, 10(6), Q06010, DOI: https://doi.org/10.1029/2008GC002180.Google Scholar
Noordmann, J., Weyer, S., Montoya-Pino, C. et al. (2015). Uranium and molybdenum isotope systematics in modern euxinic basins: Case studies from the central Baltic Sea and the Kyllaren fjord (Norway). Chemical Geology, 396, 182195.Google Scholar
Neely, R. A., Gislason, S. R., Ólafsson, M. et al.(2018). Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland. Earth and Planetary Science Letters, 486, 108118.Google Scholar

References

Adelson, J. M., Helz, G. R., & Miller, C. V. (2001). Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments. Geochimica et Cosmochimica Acta, 65(2), 237252.Google Scholar
Algeo, T. J., & Lyons, T. W. (2006). Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21(1). DOI: https://doi.org/10.1029/2004PA001112.Google Scholar
Algeo, T. J., & Tribovillard, N. (2009). Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chemical Geology, 268(3–4), 211225.Google Scholar
Anbar, A. D., & Knoll, A. H. (2002). Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297(5584), 11371142.Google Scholar
Anbar, Ariel D., Yun Duan, Timothy W. Lyons, et al. A whiff of oxygen before the Great Oxidation Event? Science 317, no. 5846 (2007): 19031906.Google Scholar
Ardakani, O. H., Chappaz, A., Sanei, H., & Mayer, B. (2016). Effect of thermal maturity on remobilization of molybdenum in black shales. Earth and Planetary Science Letters, 449, 311320.Google Scholar
Ardakani, O. H., Hlohowskyj, S. R., Chappaz, A., et al. (2020). Molybdenum speciation tracking hydrocarbon migration in fine-grained sedimentary rocks. Geochimica et Cosmochimica Acta, 283, 136–148.Google Scholar
Ardakani, O. H., Sanei, H., Ghanizadeh, A., et al. (2018). Do all fractions of organic matter contribute equally in shale porosity? A case study from Upper Ordovician Utica Shale, southern Quebec, Canada. Marine and Petroleum Geology, 92, 794808.Google Scholar
Arnold, G. L., Anbar, A. D., Barling, J., & Lyons, T. W. (2004). Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 304(5667), 8790.Google Scholar
Azrieli-Tal, I., Matthews, A., Bar-Matthews, M., Almogi-Labin, A., Vance, D., Archer, C., & Teutsch, N. (2014). Evidence from molybdenum and iron isotopes and molybdenum–uranium covariation for sulphidic bottom waters during Eastern Mediterranean sapropel S1 formation. Earth and Planetary Science Letters, 393, 231–242.Google Scholar
Barling, J., & Anbar, A. D. (2004). Molybdenum isotope fractionation during adsorption by manganese oxides. Earth and Planetary Science Letters, 217(3–4), 315329.Google Scholar
Barling, J., Arnold, G. L., & Anbar, A. D. (2001). Natural mass-dependent variations in the isotopic composition of molybdenum. Earth and Planetary Science Letters, 193(3–4), 447457.Google Scholar
Berrang, P. G., & Grill, E. V. (1974). The effect of manganese oxide scavenging on molybdenum in Saanich Inlet, British Columbia. Marine Chemistry, 2(2), 125148.Google Scholar
Bertine, K. (1972). The deposition of molybdenum in anoxic waters. Marine Chemistry, 1(1), 43–53.Google Scholar
Bertine, K. K., & Turekian, K. K. (1973). Molybdenum in marine deposits. Geochimica et Cosmochimica Acta, 37(6), 14151434.Google Scholar
Boyd, E. S., Anbar, A. D., Miller, S., et al. (2011). A late methanogen origin for molybdenum‐dependent nitrogenase. Geobiology, 9(3), 221232.Google Scholar
Brongersma-Sanders, M., Stephan, K. M., Kwee, T. G., & De Bruin, M. (1980). Distribution of minor elements in cores from the Southwest Africa shelf with notes on plankton and fish mortality. Marine Geology, 37(1–2), 91132.Google Scholar
Brumsack, H. J. (1986). The inorganic geochemistry of Cretaceous black shales (DSDP Leg 41) in comparison to modern upwelling sediments from the Gulf of California. Geological Society, London, Special Publications, 21(1), 447462.Google Scholar
Brumsack, H. J., & Gieskes, J. M. (1983). Interstitial water trace-metal chemistry of laminated sediments from the Gulf of California, Mexico. Marine Chemistry, 14(1), 89106.Google Scholar
Brüske, A., Weyer, S., Zhao, M. Y., Planavsky, N. J., Wegwerth, A., Neubert, N., … & Lyons, T. W. (2020). Correlated molybdenum and uranium isotope signatures in modern anoxic sediments: Implications for their use as paleo-redox proxy. Geochimica et Cosmochimica Acta, 270, 449–474.Google Scholar
Calvert, S. E., & Morris, R. J. (1977). Geochemical studies of organic-rich sediments from the Namibian Shelf. II. Metal-organic associations. In M. Angel, ed., A Voyage of Discovery (pp. 667680). Pergamon, London.Google Scholar
Calvert, S. E., & Price, N. B. (1983). Geochemistry of Namibian shelf sediments. In E. Suess & J. Thiede, eds., Coastal Upwelling Its Sediment Record. Part A: Responses of the Sedimentary Regime to Present Coastal Upwelling (pp. 337375). Springer, Boston.Google Scholar
Canfield, D. E., & Thamdrup, B. (2009). Towards a consistent classification scheme for geochemical environments, or, why we wish the term “suboxic” would go away. Geobiology, 7(4), 385392.Google Scholar
Chappaz, A., Glass, J. B., & Lyons, T. W. (2017). Molybdenum. In W. White (ed.), Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. DOI: https://doi.org/10.1007/978-3-319-39193-9_256-1.Google Scholar
Chappaz, A., Gobeil, C., & Tessier, A. (2008). Geochemical and anthropogenic enrichments of Mo in sediments from perennially oxic and seasonally anoxic lakes in Eastern Canada. Geochimica et Cosmochimica Acta, 72(1), 170184.Google Scholar
Chappaz, A., Lyons, T. W., Gordon, G. W., & Anbar, A. D. (2012). Isotopic fingerprints of anthropogenic molybdenum in lake sediments. Environmental Science & Technology, 46(20), 1093410940.Google Scholar
Chappaz, A., Lyons, T. W., Gregory, D. D., et al. Does pyrite act as an important host for molybdenum in modern and ancient euxinic sediments? Geochimica et Cosmochimica Acta, 126(2014), 112122.Google Scholar
Chen, X., Ling, H. F., Vance, D., et al. (2015). Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature Communications, 6(1), 17.Google Scholar
Collier, R. W. (1985). Molybdenum in the Northeast Pacific Ocean 1. Limnology and Oceanography, 30(6), 13511354.Google Scholar
Crusius, J., Calvert, S., Pedersen, T., & Sage, D. (1996). Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, 145(1–4), 6578.Google Scholar
Dahl, T. W., Anbar, A. D., Gordon, G. W., et al. (2010). The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland. Geochimica et Cosmochimica Acta, 74(1), 144163.Google Scholar
Dahl, T. W., Chappaz, A., Fitts, J. P., & Lyons, T. W. (2013). Molybdenum reduction in a sulfidic lake: Evidence from X-ray absorption fine-structure spectroscopy and implications for the Mo paleoproxy. Geochimica et Cosmochimica Acta, 103, 213231.Google Scholar
Dahl, T. W., Chappaz, A., Hoek, J., et al. (2017). Evidence of molybdenum association with particulate organic matter under sulfidic conditions. Geobiology, 15(2), 311323.Google Scholar
Dahl, T. W., & Wirth, S. B. (2017). Molybdenum isotope fractionation and speciation in a euxinic lake – Testing ways to discern isotope fractionation processes in a sulfidic setting. Chemical Geology, 460, 8492.Google Scholar
Dickson, A. J. (2017). A molybdenum-isotope perspective on Phanerozoic deoxygenation events. Nature Geoscience, 10(10), 721726.Google Scholar
Dickson, A. J., Idiz, E., Porcelli, D., & van den Boorn, S. H. (2019). The influence of thermal maturity on the stable isotope compositions and concentrations of molybdenum, zinc and cadmium in organic-rich marine mudrocks. Geochimica et Cosmochimica Acta, 1–16. DOI: https://doi.org/10.1016/j.gca.2019.11.001.Google Scholar
Emerson, S. R., & Huested, S. S. (1991). Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry, 34(3–4), 177196.Google Scholar
Erickson, B. E., & Helz, G. R. (2000). Molybdenum (VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochimica et Cosmochimica Acta, 64(7), 11491158.Google Scholar
Erickson, R. L. (1973). Crustal abundance of elements, and mineral reserves and resources. US Geological Survey Professional Paper 820, 2125.Google Scholar
Glass, J. B., Wolfe‐Simon, F., & Anbar, A. D. (2009). Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae. Geobiology, 7(2), 100123.Google Scholar
Glass, J. B., Chappaz, A., Eustis, B., et al. (2013). Molybdenum geochemistry in a seasonally dysoxic Mo-limited lacustrine ecosystem. Geochimica et Cosmochimica Acta, 114, 204219.Google Scholar
Goldberg, S., & Forster, H. S. (1998). Factors affecting molybdenum adsorption by soils and minerals. Soil Science, 163(2), 109114.Google Scholar
Goldberg, S., Forster, H. S., & Godfrey, C. L. (1996). Molybdenum adsorption on oxides, clay minerals, and soils. Soil Science Society of America Journal, 60(2), 425432.Google Scholar
Goldberg, T., Archer, C., Vance, D., & Poulton, S. W. (2009). Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochimica et Cosmochimica Acta, 73(21), 65026516.Google Scholar
Goldschmidt, V. M. (1954). Geochemistry. Clarendon Press, Oxford.Google Scholar
Greaney, A. T., Rudnick, R. L., Romaniello, S. J., et al. (2020). Molybdenum isotope fractionation in glacial diamictites tracks the onset of oxidative weathering of the continental crust. Earth and Planetary Science Letters, 534, 116083.Google Scholar
Greber, N. D., Puchtel, I. S., Nägler, T. F., & Mezger, K. (2015). Komatiites constrain molybdenum isotope composition of the Earth’s mantle. Earth and Planetary Science Letters, 421, 129138.Google Scholar
Hardisty, D. S., Lyons, T. W., Riedinger, N., et al. (2018). An evaluation of sedimentary molybdenum and iron as proxies for pore fluid paleoredox conditions. American Journal of Science, 318(5), 527556.Google Scholar
Helz, G. R., Bura-Nakić, E., Mikac, N., & Ciglenečki, I. (2011). New model for molybdenum behavior in euxinic waters. Chemical Geology, 284(3–4), 323332.Google Scholar
Helz, G. R., Miller, C. V., Charnock, J. M., et al. (1996). Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60(19), 36313642.Google Scholar
Helz, G. R., & Vorlicek, T. P. (2019). Precipitation of molybdenum from euxinic waters and the role of organic matter. Chemical Geology, 509, 178193.Google Scholar
Holland, H. D. (1984). The chemical evolution of the atmosphere and oceans. Princeton University Press.Google Scholar
Hutchings, A. M., Basu, A., Dickson, A. J., & Turchyn, A. V. (2020). Molybdenum geochemistry in salt marsh pond sediments. Geochimica et Cosmochimica Acta, 284, 75–91.Google Scholar
Kashiwabara, T., Takahashi, Y., Tanimizu, M., & Usui, A. (2011). Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides. Geochimica et Cosmochimica Acta, 75(19), 57625784.Google Scholar
Kendall, B., Dahl, T. W., & Anbar, A. D. (2017). The stable isotope geochemistry of molybdenum. Reviews in Mineralogy and Geochemistry, 82(1), 683732.Google Scholar
Kendall, B., Komiya, T., Lyons, T. W., et al. (2015). Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period. Geochimica et Cosmochimica Acta, 156, 173193.Google Scholar
Kerl, C. F., Lohmayer, R., Bura-Nakić, E., Vance, D., & Planer-Friedrich, B. (2017). Experimental confirmation of isotope fractionation in thiomolybdates using ion chromatographic separation and detection by multicollector ICPMS. Analytical Chemistry, 89(5), 31233129.Google Scholar
King, E. K., Perakis, S. S., & Pett-Ridge, J. C. (2018). Molybdenum isotope fractionation during adsorption to organic matter. Geochimica et Cosmochimica Acta, 222, 584598.Google Scholar
King, E. K., & Pett-Ridge, J. C. (2018). Reassessing the dissolved molybdenum isotopic composition of ocean inputs: The effect of chemical weathering and groundwater. Geology, 46(11), 955958.Google Scholar
Kuroda, P. K., & Sandell, E. B. (1954). Geochemistry of molybdenum. Geochimica et Cosmochimica Acta, 6(1), 3563.Google Scholar
Liang, Liyuan, Rinaldi, Romano, and Schober, Helmut, eds. Neutron applications in earth, energy and environmental sciences. Springer Science & Business Media, 2008.Google Scholar
Liermann, L. J., Guynn, R. L., Anbar, A., & Brantley, S. L. (2005). Production of a molybdophore during metal-targeted dissolution of silicates by soil bacteria. Chemical Geology, 220(3–4), 285302.Google Scholar
Lyons, T. W., Anbar, A. D., Severmann, S., Scott, C., & Gill, B. C. (2009). Tracking euxinia in the ancient ocean: A multiproxy perspective and Proterozoic case study. Annual Review of Earth and Planetary Sciences, 37, 507534.Google Scholar
Lyons, T. W., Reinhard, C. T., & Planavsky, N. J. (2014). The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506(7488), 307315.Google Scholar
Miller, C. A., Peucker-Ehrenbrink, B., Walker, B. D., & Marcantonio, F. (2011), Re-assessing the surface cycling of molybdenum and rhenium. Geochimica et Cosmochimica Acta, 75, 71467179.Google Scholar
Nägler, T. F., Neubert, N., Böttcher, M. E., Dellwig, O., & Schnetger, B. (2011). Molybdenum isotope fractionation in pelagic euxinia: Evidence from the modern Black and Baltic Seas. Chemical Geology, 289(1–2), 111.Google Scholar
Nägler, T. F., Siebert, C., Lüschen, H., & Böttcher, M. E. (2005). Sedimentary Mo isotope record across the Holocene fresh–brackish water transition of the Black Sea. Chemical Geology, 219(1–4), 283–295.Google Scholar
Nakagawa, Y., Takano, S., Firdaus, M. L., et al. (2012). The molybdenum isotopic composition of the modern ocean. Geochemical Journal, 46(2), 131141.Google Scholar
Neubert, N., Nägler, T. F., & Böttcher, M. E. (2008). Sulfidity controls molybdenum isotope fractionation into euxinic sediments: Evidence from the modern Black Sea. Geology, 36(10), 775778.Google Scholar
Nissenbaum, A., & Swaine, D. J. (1976). Organic matter-metal interactions in recent sediments: The role of humic substances. Geochimica et Cosmochimica Acta, 40(7), 809816.Google Scholar
Noordmann, J., Weyer, S., Montoya-Pino, C., Dellwig, O., Neubert, N., Eckert, S., Paetzel, M. and Böttcher, M., 2015, Uranium and molybdenum isotope systematics in modern euxinic basins: Case studies from the central Baltic Sea and the Kyllaren fjord (Norway): Chemical Geology, v. 396, p. 182–195, http://dx.doi.org/10.1016/j.chemgeo.2014.12.012Google Scholar
Pearce, C. R., Cohen, A. S., Coe, A. L., & Burton, K. W. (2008). Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic. Geology, 36(3), 231234.Google Scholar
Pedersen, T. F., Waters, R. D., & Macdonald, R. W. (1989). On the natural enrichment of cadmium and molybdenum in the sediments of Ucluelet Inlet, British Columbia. Science of the Total Environment, 79(2), 125139.Google Scholar
Poulson Brucker, R. L., McManus, J., Severmann, S., & Berelson, W. M. (2009). Molybdenum behavior during early diagenesis: Insights from Mo isotopes. Geochemistry, Geophysics, Geosystems, 10(6).Google Scholar
Proemse, B. C., Grasby, S. E., Wieser, M. E., Mayer, B., & Beauchamp, B. (2013). Molybdenum isotopic evidence for oxic marine conditions during the latest Permian extinction. Geology, 41(9), 967970.Google Scholar
Rahaman, W., Singh, S. K., & Raghav, S. (2010). Dissolved Mo and U in rivers and estuaries of India: Implication to geochemistry of redox sensitive elements and their marine budgets. Chemical Geology, 278(3–4), 160172.Google Scholar
Reich, M., Deditius, A., Chryssoulis, S., et al. (2013). Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochimica et Cosmochimica Acta, 104, 4262.Google Scholar
Reimann, C., & De Caritat, P. (2012). Chemical elements in the environment: Factsheets for the geochemist and environmental scientist. Springer Science & Business Media.Google Scholar
Reinhard, C. T., Planavsky, N. J., Robbins, L. J., et al. (2013). Proterozoic ocean redox and biogeochemical stasis. Proceedings of the National Academy of Sciences, 110(14), 53575362.Google Scholar
Reitz, A., Wille, M., Nägler, T. F., & de Lange, G. J. (2007). Atypical Mo isotope signatures in eastern Mediterranean sediments. Chemical Geology, 245(1–2), 18.Google Scholar
Ross, S., & Sussman, A. (1955). Surface oxidation of molybdenum disulfide. The Journal of Physical Chemistry, 59(9), 889892.Google Scholar
Scholz, F., Baum, M., Siebert, C., et al. (2018). Sedimentary molybdenum cycling in the aftermath of seawater inflow to the intermittently euxinic Gotland Deep, Central Baltic Sea. Chemical Geology, 491, 2738.Google Scholar
Scholz, F., Siebert, C., Dale, A. W., & Frank, M. (2017). Intense molybdenum accumulation in sediments underneath a nitrogenous water column and implications for the reconstruction of paleo-redox conditions based on molybdenum isotopes. Geochimica et Cosmochimica Acta, 213, 400417.Google Scholar
Scott, C., & Lyons, T. W. (2012). Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chemical Geology, 324, 1927.Google Scholar
Scott, C., Lyons, T. W., Bekker, A., et al. (2008). Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452(7186), 456459.Google Scholar
Seralathan, P., & Hartmann, M. (1986). Molybdenum and vanadium in sediment cores from the NW-African continental margin and their relations to climatic and environmental conditions. Meteor-Forschungsergebnisse. Reihe C, Geologie und Geophysik, (40), 117.Google Scholar
Shaw, T. J., Gieskes, J. M., & Jahnke, R. A. (1990). Early diagenesis in differing depositional environments: The response of transition metals in pore water. Geochimica et Cosmochimica Acta, 54(5), 12331246.Google Scholar
Siebert, C., Nägler, T. F., von Blanckenburg, F., & Kramers, J. D. (2003). Molybdenum isotope records as a potential new proxy for paleoceanography. Earth and Planetary Science Letters, 211(1–2), 159171.Google Scholar
Siebert, C., Kramers, J. D., Meisel, T., Morel, P., & Nägler, T. F. (2005). PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochimica et Cosmochimica Acta, 69(7), 17871801.Google Scholar
Smedley, P. L., & Kinniburgh, D. G. (2017). Molybdenum in natural waters: A review of occurrence, distributions, and controls. Applied Geochemistry, 84, 387432.Google Scholar
Sweere, T. C., Hennekam, R., Vance, D., & Reichart, G. J. (2021). Molybdenum isotope constraints on the temporal development of sulfidic conditions during Mediterranean sapropel intervals. Geochemical Perspectives Letters, 17, 16–20.Google Scholar
Szilagyi, M. (1967). Sorption of molybdenum by humus preparations. Nuclear Research Institute, Debrecen, Hungary.Google Scholar
Tessin, A., Chappaz, A., Hendy, I., & Sheldon, N. (2019). Molybdenum speciation as a paleo-redox proxy: A case study from Late Cretaceous Western Interior Seaway black shales. Geology, 47(1), 5962.Google Scholar
Tossell, J. A. (2005). Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution. Geochimica et Cosmochimica Acta, 69, 29812993.Google Scholar
Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1–2), 1232.Google Scholar
Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175192.Google Scholar
Voegelin, A. R., Pettke, T., Greber, N. D., von Niederhäusern, B., & Naegler, T. F. (2014). Magma differentiation fractionates Mo isotope ratios: Evidence from the Kos Plateau Tuff (Aegean Arc). Lithos, 190, 440448.Google Scholar
Vorlicek, T. P., Helz, G. R., Chappaz, A., et al. (2018). Molybdenum burial mechanism in sulfidic sediments: iron-sulfide pathway. ACS Earth and Space Chemistry, 2(6), 565576.Google Scholar
Wagner, M. A., Chappaz, and T. W. Lyons. (2017). Molybdenum speciation and burial pathway in weakly sulfidic environments: Insights from XAFS. Geochimica et Cosmochimica Acta, 206, 1829.Google Scholar
Wang, D., Aller, R. C., & Sañudo-Wilhelmy, S. A. (2011). Redox speciation and early diagenetic behavior of dissolved molybdenum in sulfidic muds. Marine Chemistry, 125(1–4), 101107.Google Scholar
Wasylenki, L. E., Anbar, A. D., Liermann, L. J., et al. (2007). Isotope fractionation during microbial metal uptake measured by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 22(8), 905910.Google Scholar
Wasylenki, L. E., Rolfe, B. A., Weeks, C. L., Spiro, T. G., & Anbar, A. D. (2008). Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochimica et Cosmochimica Acta, 72(24), 59976005.Google Scholar
Wasylenki, L. E., Weeks, C. L., Bargar, J. R., et al. (2011). The molecular mechanism of Mo isotope fractionation during adsorption to birnessite. Geochimica et Cosmochimica Acta, 75(17),50195031.Google Scholar
Wedepohl, K. H. (1968). Chemical fractionation in the sedimentary environment. In L. H. Ahrens (ed.), Origin and Distribution of the Elements (pp. 9991016). Pergamon.Google Scholar
Wedepohl, K. H. (1971). Environmental influences on the chemical composition of shales and clays. Physics and Chemistry of the Earth, 8, 307333.Google Scholar
Wichard, T., Mishra, B., Myneni, S. C., Bellenger, J. P., & Kraepiel, A. M. (2009). Storage and bioavailability of molybdenum in soils increased by organic matter complexation. Nature Geoscience, 2(9), 625629.Google Scholar
Wille, M., Kramers, J. D., Nägler, T. F., et al. (2007). Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochimica et Cosmochimica Acta, 71(10), 24172435.Google Scholar
Wille, M., Nägler, T. F., Lehmann, B., Schröder, S., & Kramers, J. D. (2008). Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature, 453 (7196), 767769.Google Scholar
Zerkle, A. L., Scheiderich, K., Maresca, J. A., Liermann, L. J., & Brantley, S. L. (2011). Molybdenum isotope fractionation by cyanobacterial assimilation during nitrate utilization and N2 fixation. Geobiology, 9(1), 94106.Google Scholar
Zheng, Y., Anderson, R. F., Van Geen, A., & Kuwabara, J. (2000). Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64(24), 41654178.Google Scholar
Zhou, L., Algeo, T. J., Shen, J., et al. (2015). Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 420, 223234.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Molybdenum as a Paleoredox Proxy
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Molybdenum as a Paleoredox Proxy
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Molybdenum as a Paleoredox Proxy
Available formats
×