Skip to main content Accessibility help
×
  • Cited by 6
Publisher:
Cambridge University Press
Online publication date:
July 2017
Print publication year:
2017
Online ISBN:
9781316672631

Book description

Since its conception in the 1960s, string theory has been hailed as one of the most promising routes we have to unify quantum mechanics and general relativity. This book provides a concise introduction to string theory explaining central concepts, mathematical tools and covering recent developments in physics including compactifications and gauge/string dualities. With string theory being a multidisciplinary field interfacing with high energy physics, mathematics and quantum field theory, this book is ideal for both students with no previous knowledge of the field and scholars from other disciplines who are looking for an introduction to basic concepts.

Reviews

'This book successfully captures the essence of string theory every theoretical physicist should know. I would like to use it in my next course on string theory at Caltech!'

Hirosi Ooguri - California Institute of Technology

'Systematic introduction to string theory that brings the reader to the forefront of modern developments in the field, written from entirely modern perspective. The book covers amazingly large amount of topics with due attention to detail and logical rigour. Perfect book for first reading in string theory that can be used as reference by its practitioners.'

Konstantin Zarembo - Nordic Institute for Theoretical Physics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
[1] M., Ammon and J., Erdmenger. Gauge/gravity Duality. Cambridge University Press, 2015 Google Scholar.
[2] G., Arutyunov. Lectures on String Theory. 2009 Google Scholar. Utrecht University.
[3] G., Arutyunov and S., Frolov. Foundations of the AdS 5× S5 superstring. Part I. J. Phys., A42:254003, 2009 Google Scholar.
[4] J., Bartels, V., Schomerus, and M., Sprenger. The Bethe roots of Regge cuts in strongly coupled N=4 SYM theory. JHEP, 07:098, 2015 Google Scholar.
[5] B., Basso, S., Caron-Huot, and A., Sever. Adjoint BFKL at finite coupling: a short-cut from the collinear limit. JHEP, 01:027, 2015 Google Scholar.
[6] K., Becker, M., Becker, and J.H., Schwarz. String Theory and M-Theory: A Modern Introduction. Cambridge University Press, 2006 Google Scholar.
[7] N., Beisert, B., Eden, and M., Staudacher. Transcendentality and crossing. J. Stat. Mech., 0701:P01021, 2007 Google Scholar.
[8] N., Beisert et al. Review of AdS/CFT integrability: an overview. Lett. Math. Phys., 99:3–32, 2012 Google Scholar.
[9] A.A., Belavin, A.M., Polyakov, and A.B., Zamolodchikov. Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys., B241:333–380, 1984 Google Scholar.
[10] H., Bethe. On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain. Z. Phys., 71:205–226, 1931 Google Scholar.
[11] V., Bouchard. Lectures on Complex Geometry, Calabi-Yau Manifolds and Toric Geometry. 2007 Google Scholar.
[12] L., Brink, P. Di, Vecchia, and P.S., Howe. A locally supersymmetric and reparametrization invariant action for the spinning string. Phys. Lett., B65:471–474, 1976 Google Scholar.
[13] R.C., Brower and K.A., Friedman. Spectrum generating algebra and no ghost theorem for the Neveu-Schwarz model. Phys. Rev., D7:535–539, 1973 Google Scholar.
[14] R.C., Brower. Spectrum generating algebra and no ghost theorem for the dual model. Phys. Rev., D6:1655–1662, 1972 Google Scholar.
[15] C.-S., Chu and P.-M., Ho. Noncommutative open string and D-brane. Nucl. Phys., B550:151–168, 1999 Google Scholar.
[16] P. D. B., Collins. An Introduction to Regge Theory and High-Energy Physics. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2009 Google Scholar.
[17] S., Deser and B., Zumino. A complete action for the spinning string. Phys. Lett., B65:369–373, 1976 Google Scholar.
[18] P. Di, Francesco, P., Mathieu, and D., Senechal. Conformal Field Theory. Springer Verlag, 1997 Google Scholar.
[19] R., Dijkgraaf, C., Vafa, E.P., Verlinde, and H.L., Verlinde. The operator algebra of orbifold models. Commun. Math. Phys., 123:485, 1989 Google Scholar.
[20] J., Dixmier. Von Neumann Algebras. North-Holland Mathematical Library. North- Holland, 1981 Google Scholar.
[21] M.J., Duff, R.R., Khuri, and J.X., Lu. String solitons. Phys. Rept., 259:213–326, 1995 Google Scholar.
[22] L.D., Faddeev. How algebraic Bethe ansatz works for integrable model. In Relativistic Gravitation and Gravitational Radiation. Proceedings, School of Physics, Les Houches, France, September 26–October 6, 1995, pp. 149–219, 1996 Google Scholar.
[23] D., Gepner. Space-time supersymmetry in compactified string theory and superconformal models. Nucl. Phys., B296:757, 1988 Google Scholar.
[24] F., Gliozzi, J., Scherk, and D.I., Olive. Supergravity and the spinor dual model. Phys. Lett., B65:282, 1976 Google Scholar.
[25] P., Goddard, J., Goldstone, C., Rebbi, and C.B., Thorn. Quantum dynamics of a massless relativistic string. Nucl. Phys., B56:109–135, 1973 Google Scholar.
[26] P., Goddard and C.B., Thorn. Compatibility of the dual pomeron with unitarity and the absence of ghosts in the dual resonance model. Phys. Lett., B40:235–238, 1972 Google Scholar.
[27] M.B., Green, J.H., Schwarz, and E., Witten. Superstring Theory. Vol. 1: Introduction. Cambridge University Press, 1987 Google Scholar.
[28] M.B., Green, J.H., Schwarz, and E., Witten. Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology. Cambridge Univetsity Press, 1987 Google Scholar.
[29] M.B., Green and J.H., Schwarz. Anomaly cancellation in supersymmetric D=10 gauge theory and superstring theory. Phys. Lett., B149:117–122, 1984 Google Scholar.
[30] B.R., Greene. Lectures on the Quantum Geometry of String Theory. In Quantum Symmetries, Proceedings of the NATO Advanced Study Institute, 64th Session, Les Houches, France, August 1–September 8, 1995, edited by A., Connes, K., Gawedzki, and J., Zinn-Justin, 126–193, Elsevier, 1995 Google Scholar.
[31] P.A., Griffiths and J., Harris. Principles of Algebraic Geometry. Wiley, 1978 Google Scholar.
[32] N., Gromov, F., Levkovich-Maslyuk, and G., Sizov. Quantum Spectral Curve and the Numerical Solution of the Spectral Problem in AdS5/CFT4. 2015 Google Scholar.
[33] D.J., Gross, J.A., Harvey, E.J., Martinec, and R., Rohm. The heterotic string. Phys. Rev. Lett., 54:502–505, 1985 Google Scholar.
[34] S.S., Gubser, I.R., Klebanov, and A.M., Polyakov. A semiclassical limit of the gauge/string correspondence. Nucl. Phys., B636:99–114, 2002 Google Scholar.
[35] M., Henneaux and C., Teitelboim. Quantization of Gauge Systems. Princeton Series in Physics. Princeton University Press, 1992 Google Scholar.
[36] J., Hoppe. Membranes and Matrix Models. 2002 Google Scholar. https://arxiv.org/abs/hep-th/0206192.
[37] A.C., Irving and R.P., Worden. Regge phenomenology. Phys. Rept., 34:117–231, 1977 Google Scholar.
[38] V.G., Kac. Infinite Dimensional Lie Algebras. Cambridge University Press, 1990 Google Scholar.
[39] E., Kiritsis. String Theory in a Nutshell. Princeton University Press, 2007 Google Scholar.
[40] D., Kutasov. Introduction to little string theory. In Superstrings and Related Matters. Proceedings, Spring School, Trieste, Italy, April 2–10, 2001, pp. 165–209, 2001 Google Scholar.
[41] D., Lüst and S., Theisen. Lectures on String Theory. Lecture Notes in Physics. Springer Verlag, 1989 Google Scholar.
[42] J.M., Maldacena. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 2:231–252, 1998 Google Scholar.
[43] J.E., Marsden and T., Ratiu. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Texts in AppliedMathematics. Springer, 1994 Google Scholar.
[44] J.A., Minahan and K., Zarembo. The Bethe ansatz for N=4 superYang-Mills. JHEP, 03:013, 2003 Google Scholar.
[45] C., Montonen and D.I., Olive. Magnetic monopoles as gauge particles? Phys. Lett., B72:117, 1977 Google Scholar.
[46] D., Mumford. Tata Lectures on Theta, 1. Modern Birkhuser Classics. Springer, 2007 Google Scholar.
[47] Y., Nambu. Dual model of hadrons. 1970 Google Scholar. University of Chicago Preprint EFI-70-07.
[48] H., Nastase. Introduction to the AdS/CFT Correspondence. Cambridge University Press, 2015 Google Scholar.
[49] A., Neveu and J., Scherk. Connection between Yang-Mills fields and dual models. Nucl. Phys., B36:155–161, 1972 Google Scholar.
[50] H.B., Nielsen and P., Olesen. A parton view on dual amplitudes. Phys. Lett., B32:203, 1970 Google Scholar.
[51] J.E., Paton and H.-M., Chan. Generalized Veneziano model with isospin. Nucl. Phys., B10:516–520, 1969 Google Scholar.
[52] M.E., Peskin and D.V., Schroeder. An Introduction to Quantum Field Theory. Westview Press, 1995 Google Scholar.
[53] J., Polchinski and M.J., Strassler. Hard scattering and gauge/string duality. Phys. Rev. Lett., 88:031601, 2002 Google Scholar.
[54] J.G., Polchinski. Lectures on D-branes. 1996 Google Scholar. https://arxiv.org/abs/hep-th/9611050.
[55] J.G., Polchinski. String Theory – Volume I. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2005 Google Scholar.
[56] J.G., Polchinski. String Theory – Volume II. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2005 Google Scholar.
[57] A., Recknagel and V., Schomerus. Boundary Conformal Field Theory and the Worldsheet Approach to D-branes. Cambridge University Press, 2013 Google Scholar.
[58] J., Scherk and J.H., Schwarz. Dual models for nonhadrons. Nucl. Phys., B81:118–144, 1974 Google Scholar.
[59] V., Schomerus. D-branes and deformation quantization. JHEP, 9906:030, 1999 Google Scholar.
[60] N., Seiberg and E., Witten. String theory and noncommutative geometry. JHEP, 9909:032, 1999 Google Scholar.
[61] S., Sethi and M., Stern. D-brane bound states redux. Commun. Math. Phys., 194:675– 705, 1998 Google Scholar.
[62] K., Skenderis. Lecture notes on holographic renormalization. Class. Quant. Grav., 19:5849–5876, 2002 Google Scholar.
[63] R., Slansky. Group theory for unified model building. Phys. Rept., 79:1–128, 1981 Google Scholar.
[64] L., Susskind. Dual symmetric theory of hadrons. 1. Nuovo Cim., A69:457–496, 1970 Google Scholar.
[65] R.J., Szabo. An Introduction to String Theory and D-brane Dynamics. Imperial College Press, 2004 Google Scholar.
[66] G. 't, Hooft. A planar diagram theory for strong interactions. Nucl. Phys., B72:461, 1974 Google Scholar.
[67] J., Terning. Modern Supersymmetry: Dynamics and Duality. Oxford University Press, 2006 Google Scholar.
[68] D., Tong. Lectures on String Theory. 2009 Google Scholar. http://www.damtp.cam.ac.uk/user/tong/string.html.
[69] A.A., Tseytlin. Review of AdS/CFT integrability, chapter II.1: classical AdS5 × S5 string solutions. Lett. Math. Phys., 99:103–125, 2012 Google Scholar.
[70] A. van, Proeyen and D.Z., Freedman. Supergravity. Cambridge University Press, 2012 Google Scholar.
[71] G., Veneziano. Construction of a crossing-symmetric, Regge behaved amplitude for linearly rising trajectories. Nuovo Cim., A57:190–197, 1968 Google Scholar.
[72] S., Weinberg. The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge University Press, 1995 Google Scholar.
[73] J., Wess and J., Bagger. Supersymmetry and Supergravity. Princeton Series in Physics. Princeton University Press, 1992 Google Scholar.
[74] P., West. Introduction to Strings and Branes. Cambridge University Press, 2012 Google Scholar.
[75] P.C., West. Introduction to Supersymmetry and Supergravity. World Scientific, 1986 Google Scholar.
[76] E., Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2:253–291, 1998 Google Scholar.
[77] T., Yoneya. Quantum gravity and the zero slope limit of the generalized Virasoro model. Lett. Nuovo Cim., 8:951–955, 1973 Google Scholar.
[78] T., Yoneya. Connection of dual models to electrodynamics and gravidynamics. Prog. Theor. Phys., 51:1907–1920, 1974 Google Scholar.
[79] B., Zumino. Supersymmetry and Kahler mainfolds. Phys. Lett., B87:203, 1979 Google Scholar.
[80] B., Zwiebach. A First Course in String Theory. Cambridge University Press, 2005 Google Scholar.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 14926 *
Loading metrics...

Book summary page views

Total views: 9596 *
Loading metrics...

* Views captured on Cambridge Core between 5th July 2017 - 2nd April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.