Skip to main content Accessibility help
×
  • Cited by 5
Publisher:
Cambridge University Press
Online publication date:
July 2017
Print publication year:
2017
Online ISBN:
9781316672631

Book description

Since its conception in the 1960s, string theory has been hailed as one of the most promising routes we have to unify quantum mechanics and general relativity. This book provides a concise introduction to string theory explaining central concepts, mathematical tools and covering recent developments in physics including compactifications and gauge/string dualities. With string theory being a multidisciplinary field interfacing with high energy physics, mathematics and quantum field theory, this book is ideal for both students with no previous knowledge of the field and scholars from other disciplines who are looking for an introduction to basic concepts.

Reviews

'This book successfully captures the essence of string theory every theoretical physicist should know. I would like to use it in my next course on string theory at Caltech!'

Hirosi Ooguri - California Institute of Technology

'Systematic introduction to string theory that brings the reader to the forefront of modern developments in the field, written from entirely modern perspective. The book covers amazingly large amount of topics with due attention to detail and logical rigour. Perfect book for first reading in string theory that can be used as reference by its practitioners.'

Konstantin Zarembo - Nordic Institute for Theoretical Physics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
[1] M., Ammon and J., Erdmenger. Gauge/gravity Duality. Cambridge University Press, 2015.
[2] G., Arutyunov. Lectures on String Theory. 2009. Utrecht University.
[3] G., Arutyunov and S., Frolov. Foundations of the AdS 5× S5 superstring. Part I. J. Phys., A42:254003, 2009.
[4] J., Bartels, V., Schomerus, and M., Sprenger. The Bethe roots of Regge cuts in strongly coupled N=4 SYM theory. JHEP, 07:098, 2015.
[5] B., Basso, S., Caron-Huot, and A., Sever. Adjoint BFKL at finite coupling: a short-cut from the collinear limit. JHEP, 01:027, 2015.
[6] K., Becker, M., Becker, and J.H., Schwarz. String Theory and M-Theory: A Modern Introduction. Cambridge University Press, 2006.
[7] N., Beisert, B., Eden, and M., Staudacher. Transcendentality and crossing. J. Stat. Mech., 0701:P01021, 2007.
[8] N., Beisert et al. Review of AdS/CFT integrability: an overview. Lett. Math. Phys., 99:3–32, 2012.
[9] A.A., Belavin, A.M., Polyakov, and A.B., Zamolodchikov. Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys., B241:333–380, 1984.
[10] H., Bethe. On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain. Z. Phys., 71:205–226, 1931.
[11] V., Bouchard. Lectures on Complex Geometry, Calabi-Yau Manifolds and Toric Geometry. 2007.
[12] L., Brink, P. Di, Vecchia, and P.S., Howe. A locally supersymmetric and reparametrization invariant action for the spinning string. Phys. Lett., B65:471–474, 1976.
[13] R.C., Brower and K.A., Friedman. Spectrum generating algebra and no ghost theorem for the Neveu-Schwarz model. Phys. Rev., D7:535–539, 1973.
[14] R.C., Brower. Spectrum generating algebra and no ghost theorem for the dual model. Phys. Rev., D6:1655–1662, 1972.
[15] C.-S., Chu and P.-M., Ho. Noncommutative open string and D-brane. Nucl. Phys., B550:151–168, 1999.
[16] P. D. B., Collins. An Introduction to Regge Theory and High-Energy Physics. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2009.
[17] S., Deser and B., Zumino. A complete action for the spinning string. Phys. Lett., B65:369–373, 1976.
[18] P. Di, Francesco, P., Mathieu, and D., Senechal. Conformal Field Theory. Springer Verlag, 1997.
[19] R., Dijkgraaf, C., Vafa, E.P., Verlinde, and H.L., Verlinde. The operator algebra of orbifold models. Commun. Math. Phys., 123:485, 1989.
[20] J., Dixmier. Von Neumann Algebras. North-Holland Mathematical Library. North- Holland, 1981.
[21] M.J., Duff, R.R., Khuri, and J.X., Lu. String solitons. Phys. Rept., 259:213–326, 1995.
[22] L.D., Faddeev. How algebraic Bethe ansatz works for integrable model. In Relativistic Gravitation and Gravitational Radiation. Proceedings, School of Physics, Les Houches, France, September 26–October 6, 1995, pp. 149–219, 1996.
[23] D., Gepner. Space-time supersymmetry in compactified string theory and superconformal models. Nucl. Phys., B296:757, 1988.
[24] F., Gliozzi, J., Scherk, and D.I., Olive. Supergravity and the spinor dual model. Phys. Lett., B65:282, 1976.
[25] P., Goddard, J., Goldstone, C., Rebbi, and C.B., Thorn. Quantum dynamics of a massless relativistic string. Nucl. Phys., B56:109–135, 1973.
[26] P., Goddard and C.B., Thorn. Compatibility of the dual pomeron with unitarity and the absence of ghosts in the dual resonance model. Phys. Lett., B40:235–238, 1972.
[27] M.B., Green, J.H., Schwarz, and E., Witten. Superstring Theory. Vol. 1: Introduction. Cambridge University Press, 1987.
[28] M.B., Green, J.H., Schwarz, and E., Witten. Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology. Cambridge Univetsity Press, 1987.
[29] M.B., Green and J.H., Schwarz. Anomaly cancellation in supersymmetric D=10 gauge theory and superstring theory. Phys. Lett., B149:117–122, 1984.
[30] B.R., Greene. Lectures on the Quantum Geometry of String Theory. In Quantum Symmetries, Proceedings of the NATO Advanced Study Institute, 64th Session, Les Houches, France, August 1–September 8, 1995, edited by A., Connes, K., Gawedzki, and J., Zinn-Justin, 126–193, Elsevier, 1995.
[31] P.A., Griffiths and J., Harris. Principles of Algebraic Geometry. Wiley, 1978.
[32] N., Gromov, F., Levkovich-Maslyuk, and G., Sizov. Quantum Spectral Curve and the Numerical Solution of the Spectral Problem in AdS5/CFT4. 2015.
[33] D.J., Gross, J.A., Harvey, E.J., Martinec, and R., Rohm. The heterotic string. Phys. Rev. Lett., 54:502–505, 1985.
[34] S.S., Gubser, I.R., Klebanov, and A.M., Polyakov. A semiclassical limit of the gauge/string correspondence. Nucl. Phys., B636:99–114, 2002.
[35] M., Henneaux and C., Teitelboim. Quantization of Gauge Systems. Princeton Series in Physics. Princeton University Press, 1992.
[36] J., Hoppe. Membranes and Matrix Models. 2002. https://arxiv.org/abs/hep-th/0206192.
[37] A.C., Irving and R.P., Worden. Regge phenomenology. Phys. Rept., 34:117–231, 1977.
[38] V.G., Kac. Infinite Dimensional Lie Algebras. Cambridge University Press, 1990.
[39] E., Kiritsis. String Theory in a Nutshell. Princeton University Press, 2007.
[40] D., Kutasov. Introduction to little string theory. In Superstrings and Related Matters. Proceedings, Spring School, Trieste, Italy, April 2–10, 2001, pp. 165–209, 2001.
[41] D., Lüst and S., Theisen. Lectures on String Theory. Lecture Notes in Physics. Springer Verlag, 1989.
[42] J.M., Maldacena. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 2:231–252, 1998.
[43] J.E., Marsden and T., Ratiu. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Texts in AppliedMathematics. Springer, 1994.
[44] J.A., Minahan and K., Zarembo. The Bethe ansatz for N=4 superYang-Mills. JHEP, 03:013, 2003.
[45] C., Montonen and D.I., Olive. Magnetic monopoles as gauge particles? Phys. Lett., B72:117, 1977.
[46] D., Mumford. Tata Lectures on Theta, 1. Modern Birkhuser Classics. Springer, 2007.
[47] Y., Nambu. Dual model of hadrons. 1970. University of Chicago Preprint EFI-70-07.
[48] H., Nastase. Introduction to the AdS/CFT Correspondence. Cambridge University Press, 2015.
[49] A., Neveu and J., Scherk. Connection between Yang-Mills fields and dual models. Nucl. Phys., B36:155–161, 1972.
[50] H.B., Nielsen and P., Olesen. A parton view on dual amplitudes. Phys. Lett., B32:203, 1970.
[51] J.E., Paton and H.-M., Chan. Generalized Veneziano model with isospin. Nucl. Phys., B10:516–520, 1969.
[52] M.E., Peskin and D.V., Schroeder. An Introduction to Quantum Field Theory. Westview Press, 1995.
[53] J., Polchinski and M.J., Strassler. Hard scattering and gauge/string duality. Phys. Rev. Lett., 88:031601, 2002.
[54] J.G., Polchinski. Lectures on D-branes. 1996. https://arxiv.org/abs/hep-th/9611050.
[55] J.G., Polchinski. String Theory – Volume I. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2005.
[56] J.G., Polchinski. String Theory – Volume II. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2005.
[57] A., Recknagel and V., Schomerus. Boundary Conformal Field Theory and the Worldsheet Approach to D-branes. Cambridge University Press, 2013.
[58] J., Scherk and J.H., Schwarz. Dual models for nonhadrons. Nucl. Phys., B81:118–144, 1974.
[59] V., Schomerus. D-branes and deformation quantization. JHEP, 9906:030, 1999.
[60] N., Seiberg and E., Witten. String theory and noncommutative geometry. JHEP, 9909:032, 1999.
[61] S., Sethi and M., Stern. D-brane bound states redux. Commun. Math. Phys., 194:675– 705, 1998.
[62] K., Skenderis. Lecture notes on holographic renormalization. Class. Quant. Grav., 19:5849–5876, 2002.
[63] R., Slansky. Group theory for unified model building. Phys. Rept., 79:1–128, 1981.
[64] L., Susskind. Dual symmetric theory of hadrons. 1. Nuovo Cim., A69:457–496, 1970.
[65] R.J., Szabo. An Introduction to String Theory and D-brane Dynamics. Imperial College Press, 2004.
[66] G. 't, Hooft. A planar diagram theory for strong interactions. Nucl. Phys., B72:461, 1974.
[67] J., Terning. Modern Supersymmetry: Dynamics and Duality. Oxford University Press, 2006.
[68] D., Tong. Lectures on String Theory. 2009. http://www.damtp.cam.ac.uk/user/tong/string.html.
[69] A.A., Tseytlin. Review of AdS/CFT integrability, chapter II.1: classical AdS5 × S5 string solutions. Lett. Math. Phys., 99:103–125, 2012.
[70] A. van, Proeyen and D.Z., Freedman. Supergravity. Cambridge University Press, 2012.
[71] G., Veneziano. Construction of a crossing-symmetric, Regge behaved amplitude for linearly rising trajectories. Nuovo Cim., A57:190–197, 1968.
[72] S., Weinberg. The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge University Press, 1995.
[73] J., Wess and J., Bagger. Supersymmetry and Supergravity. Princeton Series in Physics. Princeton University Press, 1992.
[74] P., West. Introduction to Strings and Branes. Cambridge University Press, 2012.
[75] P.C., West. Introduction to Supersymmetry and Supergravity. World Scientific, 1986.
[76] E., Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2:253–291, 1998.
[77] T., Yoneya. Quantum gravity and the zero slope limit of the generalized Virasoro model. Lett. Nuovo Cim., 8:951–955, 1973.
[78] T., Yoneya. Connection of dual models to electrodynamics and gravidynamics. Prog. Theor. Phys., 51:1907–1920, 1974.
[79] B., Zumino. Supersymmetry and Kahler mainfolds. Phys. Lett., B87:203, 1979.
[80] B., Zwiebach. A First Course in String Theory. Cambridge University Press, 2005.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.