[1] M., Ammon and J., Erdmenger. Gauge/gravity Duality. Cambridge University Press, 2015.
[2] G., Arutyunov. Lectures on String Theory. 2009. Utrecht University.
[3] G., Arutyunov and S., Frolov. Foundations of the AdS 5× S5 superstring. Part I. J. Phys., A42:254003, 2009.
[4] J., Bartels, V., Schomerus, and M., Sprenger. The Bethe roots of Regge cuts in strongly coupled N=4 SYM theory. JHEP, 07:098, 2015.
[5] B., Basso, S., Caron-Huot, and A., Sever. Adjoint BFKL at finite coupling: a short-cut from the collinear limit. JHEP, 01:027, 2015.
[6] K., Becker, M., Becker, and J.H., Schwarz. String Theory and M-Theory: A Modern Introduction. Cambridge University Press, 2006.
[7] N., Beisert, B., Eden, and M., Staudacher. Transcendentality and crossing. J. Stat. Mech., 0701:P01021, 2007.
[8] N., Beisert et al. Review of AdS/CFT integrability: an overview. Lett. Math. Phys., 99:3–32, 2012.
[9] A.A., Belavin, A.M., Polyakov, and A.B., Zamolodchikov. Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys., B241:333–380, 1984.
[10] H., Bethe. On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain. Z. Phys., 71:205–226, 1931.
[11] V., Bouchard. Lectures on Complex Geometry, Calabi-Yau Manifolds and Toric Geometry. 2007.
[12] L., Brink, P. Di, Vecchia, and P.S., Howe. A locally supersymmetric and reparametrization invariant action for the spinning string. Phys. Lett., B65:471–474, 1976.
[13] R.C., Brower and K.A., Friedman. Spectrum generating algebra and no ghost theorem for the Neveu-Schwarz model. Phys. Rev., D7:535–539, 1973.
[14] R.C., Brower. Spectrum generating algebra and no ghost theorem for the dual model. Phys. Rev., D6:1655–1662, 1972.
[15] C.-S., Chu and P.-M., Ho. Noncommutative open string and D-brane. Nucl. Phys., B550:151–168, 1999.
[16] P. D. B., Collins. An Introduction to Regge Theory and High-Energy Physics. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2009.
[17] S., Deser and B., Zumino. A complete action for the spinning string. Phys. Lett., B65:369–373, 1976.
[18] P. Di, Francesco, P., Mathieu, and D., Senechal. Conformal Field Theory. Springer Verlag, 1997.
[19] R., Dijkgraaf, C., Vafa, E.P., Verlinde, and H.L., Verlinde. The operator algebra of orbifold models. Commun. Math. Phys., 123:485, 1989.
[20] J., Dixmier. Von Neumann Algebras. North-Holland Mathematical Library. North- Holland, 1981.
[21] M.J., Duff, R.R., Khuri, and J.X., Lu. String solitons. Phys. Rept., 259:213–326, 1995.
[22] L.D., Faddeev. How algebraic Bethe ansatz works for integrable model. In Relativistic Gravitation and Gravitational Radiation. Proceedings, School of Physics, Les Houches, France, September 26–October 6, 1995, pp. 149–219, 1996.
[23] D., Gepner. Space-time supersymmetry in compactified string theory and superconformal models. Nucl. Phys., B296:757, 1988.
[24] F., Gliozzi, J., Scherk, and D.I., Olive. Supergravity and the spinor dual model. Phys. Lett., B65:282, 1976.
[25] P., Goddard, J., Goldstone, C., Rebbi, and C.B., Thorn. Quantum dynamics of a massless relativistic string. Nucl. Phys., B56:109–135, 1973.
[26] P., Goddard and C.B., Thorn. Compatibility of the dual pomeron with unitarity and the absence of ghosts in the dual resonance model. Phys. Lett., B40:235–238, 1972.
[27] M.B., Green, J.H., Schwarz, and E., Witten. Superstring Theory. Vol. 1: Introduction. Cambridge University Press, 1987.
[28] M.B., Green, J.H., Schwarz, and E., Witten. Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology. Cambridge Univetsity Press, 1987.
[29] M.B., Green and J.H., Schwarz. Anomaly cancellation in supersymmetric D=10 gauge theory and superstring theory. Phys. Lett., B149:117–122, 1984.
[30] B.R., Greene. Lectures on the Quantum Geometry of String Theory. In Quantum Symmetries, Proceedings of the NATO Advanced Study Institute, 64th Session, Les Houches, France, August 1–September 8, 1995, edited by A., Connes, K., Gawedzki, and J., Zinn-Justin, 126–193, Elsevier, 1995.
[31] P.A., Griffiths and J., Harris. Principles of Algebraic Geometry. Wiley, 1978.
[32] N., Gromov, F., Levkovich-Maslyuk, and G., Sizov. Quantum Spectral Curve and the Numerical Solution of the Spectral Problem in AdS5/CFT4. 2015.
[33] D.J., Gross, J.A., Harvey, E.J., Martinec, and R., Rohm. The heterotic string. Phys. Rev. Lett., 54:502–505, 1985.
[34] S.S., Gubser, I.R., Klebanov, and A.M., Polyakov. A semiclassical limit of the gauge/string correspondence. Nucl. Phys., B636:99–114, 2002.
[35] M., Henneaux and C., Teitelboim. Quantization of Gauge Systems. Princeton Series in Physics. Princeton University Press, 1992.
[36] J., Hoppe. Membranes and Matrix Models. 2002. https://arxiv.org/abs/hep-th/0206192.
[37] A.C., Irving and R.P., Worden. Regge phenomenology. Phys. Rept., 34:117–231, 1977.
[38] V.G., Kac. Infinite Dimensional Lie Algebras. Cambridge University Press, 1990.
[39] E., Kiritsis. String Theory in a Nutshell. Princeton University Press, 2007.
[40] D., Kutasov. Introduction to little string theory. In Superstrings and Related Matters. Proceedings, Spring School, Trieste, Italy, April 2–10, 2001, pp. 165–209, 2001.
[41] D., Lüst and S., Theisen. Lectures on String Theory. Lecture Notes in Physics. Springer Verlag, 1989.
[42] J.M., Maldacena. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 2:231–252, 1998.
[43] J.E., Marsden and T., Ratiu. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Texts in AppliedMathematics. Springer, 1994.
[44] J.A., Minahan and K., Zarembo. The Bethe ansatz for N=4 superYang-Mills. JHEP, 03:013, 2003.
[45] C., Montonen and D.I., Olive. Magnetic monopoles as gauge particles?
Phys. Lett., B72:117, 1977.
[46] D., Mumford. Tata Lectures on Theta, 1. Modern Birkhuser Classics. Springer, 2007.
[47] Y., Nambu. Dual model of hadrons. 1970. University of Chicago Preprint EFI-70-07.
[48] H., Nastase. Introduction to the AdS/CFT Correspondence. Cambridge University Press, 2015.
[49] A., Neveu and J., Scherk. Connection between Yang-Mills fields and dual models. Nucl. Phys., B36:155–161, 1972.
[50] H.B., Nielsen and P., Olesen. A parton view on dual amplitudes. Phys. Lett., B32:203, 1970.
[51] J.E., Paton and H.-M., Chan. Generalized Veneziano model with isospin. Nucl. Phys., B10:516–520, 1969.
[52] M.E., Peskin and D.V., Schroeder. An Introduction to Quantum Field Theory. Westview Press, 1995.
[53] J., Polchinski and M.J., Strassler. Hard scattering and gauge/string duality. Phys. Rev. Lett., 88:031601, 2002.
[54] J.G., Polchinski. Lectures on D-branes. 1996. https://arxiv.org/abs/hep-th/9611050.
[55] J.G., Polchinski. String Theory – Volume I. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2005.
[56] J.G., Polchinski. String Theory – Volume II. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2005.
[57] A., Recknagel and V., Schomerus. Boundary Conformal Field Theory and the Worldsheet Approach to D-branes. Cambridge University Press, 2013.
[58] J., Scherk and J.H., Schwarz. Dual models for nonhadrons. Nucl. Phys., B81:118–144, 1974.
[59] V., Schomerus. D-branes and deformation quantization. JHEP, 9906:030, 1999.
[60] N., Seiberg and E., Witten. String theory and noncommutative geometry. JHEP, 9909:032, 1999.
[61] S., Sethi and M., Stern. D-brane bound states redux. Commun. Math. Phys., 194:675– 705, 1998.
[62] K., Skenderis. Lecture notes on holographic renormalization. Class. Quant. Grav., 19:5849–5876, 2002.
[63] R., Slansky. Group theory for unified model building. Phys. Rept., 79:1–128, 1981.
[64] L., Susskind. Dual symmetric theory of hadrons. 1.
Nuovo Cim., A69:457–496, 1970.
[65] R.J., Szabo. An Introduction to String Theory and D-brane Dynamics. Imperial College Press, 2004.
[66] G. 't, Hooft. A planar diagram theory for strong interactions. Nucl. Phys., B72:461, 1974.
[67] J., Terning. Modern Supersymmetry: Dynamics and Duality. Oxford University Press, 2006.
[68] D., Tong. Lectures on String Theory. 2009. http://www.damtp.cam.ac.uk/user/tong/string.html.
[69] A.A., Tseytlin. Review of AdS/CFT integrability, chapter II.1: classical AdS5 × S5 string solutions. Lett. Math. Phys., 99:103–125, 2012.
[70] A. van, Proeyen and D.Z., Freedman. Supergravity. Cambridge University Press, 2012.
[71] G., Veneziano. Construction of a crossing-symmetric, Regge behaved amplitude for linearly rising trajectories. Nuovo Cim., A57:190–197, 1968.
[72] S., Weinberg. The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge University Press, 1995.
[73] J., Wess and J., Bagger. Supersymmetry and Supergravity. Princeton Series in Physics. Princeton University Press, 1992.
[74] P., West. Introduction to Strings and Branes. Cambridge University Press, 2012.
[75] P.C., West. Introduction to Supersymmetry and Supergravity. World Scientific, 1986.
[76] E., Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2:253–291, 1998.
[77] T., Yoneya. Quantum gravity and the zero slope limit of the generalized Virasoro model. Lett. Nuovo Cim., 8:951–955, 1973.
[78] T., Yoneya. Connection of dual models to electrodynamics and gravidynamics. Prog. Theor. Phys., 51:1907–1920, 1974.
[79] B., Zumino. Supersymmetry and Kahler mainfolds. Phys. Lett., B87:203, 1979.
[80] B., Zwiebach. A First Course in String Theory. Cambridge University Press, 2005.