Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T04:35:20.778Z Has data issue: false hasContentIssue false

14 - The role of inflammation in Alzheimer's disease neuropathology and clinical dementia. From epidemiology to treatment

from Part I - Basic aspects of neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Giulio Maria Pasinetti
Affiliation:
Neuroinflammation Research Laboratories, Mount Sinai, School of Medicine, New York, USA
Get access

Summary

Several epidemiological studies have demonstrated a significantly lower incidence of Alzheimer's disease in individuals who regularly consume non-steroidal anti-inflammatory drugs (NSAIDs) compared with the general population. Despite this evidence, therapeutic studies investigating NSAIDs, including inhibitors of cyclooxygenase (COX)-1 and COX-2 and steroids, do not support this hypothesis. This discrepancy might be due to the fact that the bulk of epidemiological evidence has examined the likely incidence of AD prior to the onset of clinical symptoms of the disease. This inconsistency has led to the hypothesis that NSAIDs may be optimally effective as a preventive therapy prior to the onset of clinical symptoms or in individuals at high risk for AD, such as cases with mild cognitive impairment. This review will discuss recent findings from experimental models of AD neuropathology describing novel mechanisms involved in the potential beneficial role of NSAIDs. It will then examine the importance of evidence for the potential role of inflammation in amyloidosis in the AD brain. The implications of this evidence will be considered in the context of the potential negative role of inflammation in the brain during amyloid vaccination therapy in AD trials. On the basis of this information, this review will attempt to formulate a possible scenario in which optimal NSAIDs might be tested in the most favorable clinical therapeutic conditions in order to determine whether NSAIDs can provide beneficial treatment for the clinical progression of AD dementia.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 166 - 175
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Halim, M. S., Sjoquist, B. & Anggard, E. (1978). Inhibition of prostaglandin synthesis in rat brain. Acta Pharmacol. Toxicol.(Copenh., 43, 266–72CrossRefGoogle ScholarPubMed
Aisen, P. S. (1997). Inflammation and Alzheimer's disease: mechanisms and therapeutic strategies. Gerontology, 43, 143–9CrossRefGoogle ScholarPubMed
Aisen, P. S., Davis, K. L., Berg, J. D., Schafer, K., Campbell, K. & Thomas, R. G. (2000). A randomized controlled trial of prednisone in Alzheimer's disease. Alzheimer's Disease Cooperative Study. Neurology, 54, 588–93CrossRefGoogle ScholarPubMed
Bard, F., Cannon, C., Barbour, R., Burke, R. L., Games, D. & Grajeda, H. (2000). Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med., 6, 916–19CrossRefGoogle Scholar
Baumann, K., Mandelkow, E. M., Biernat, J., Piwnica-Worms, H. & Mandelkow, E. (1993). Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett., 336, 417–24CrossRefGoogle ScholarPubMed
Cao, C., Matsumura, K., Yamagata, K. & Watanabe, Y. (1995). Induction by lipopolysaccharide of cyclooxygenase-2 mRNA in rat brain; its possible role in the febrile response. Brain Res., 697, 187–96CrossRefGoogle ScholarPubMed
DeArmond, B., Francisco, C. A., Lin, J. S., Huang, F. Y., Halladay, S. & Bartziek, R. D. (1995). Safety profile of over-the-counter naproxen sodium. Clin. Ther., 17, 587–601CrossRefGoogle ScholarPubMed
Ferrari, R. A., Ward, S. J., Zobre, C. M., Liew, D. K., Perrone, M. H. & Connell, M. J. (1990). Estimation of the in vivo effect of cyclooxygenase inhibitors on prostaglandin E2 levels in mouse brain. Eur. J. Pharmacol., 179, 25–34CrossRefGoogle ScholarPubMed
Fletcher, B. S., Lim, R. W., Varnum, B. C., Kujubu, D. A., Koski, R. A. & Herschman, H. R. (1991). Structure and expression of TIS21, a primary response gene induced by growth factors and tumor promoters. J. Biol. Chem., 266, 14511–18Google ScholarPubMed
Geczy, M., Peltier, L. & Wolbach, R. (1987). Naproxen tolerability in the elderly: a summary report. J. Rheumatol., 14, 348–54Google ScholarPubMed
Giovanni, A., Keramaris, E., Morris, E. J., Hou, S. T., O'Hare, M. & Dyson, N. (2000). E2F1 mediates death of B-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3. J. Biol. Chem., 275, 11553–60CrossRefGoogle Scholar
Grana, X. & Reddy, E. P. (1995). Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene, 11, 211–19Google Scholar
Haroutunian, V., Perl, D. P., Purohit, D. P., Marin, D., Khan, K. & Lantz, M. (1998). Regional distribution of neuritic plaques in the nondemented elderly and subjects with very mild Alzheimer disease. Arch. Neurol., 55, 1185–91CrossRefGoogle ScholarPubMed
Hebert, L. E., Scherr, P.A, Bienias, J. L., Bennett, D. A. & Evans, D. A. (2003). Alzheimer disease in the US population. Arch. Neurol., 60, 1119–22CrossRefGoogle ScholarPubMed
Ho, L., Pieroni, C., Winger, D., Purohit, D. P., Aisen, P. S. & Pasinetti, G. M. (1999). Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer's disease. J. Neurosci. Res., 57, 295–3033.0.CO;2-0>CrossRefGoogle ScholarPubMed
Ho, L., Purohit, D., Haroutunian, V., Luterman, J. D., Willis, F. & Naslund, J. (2001). Neuronal cyclooxygenase 2 expression in the hippocampal formation as a function of the clinical progression of Alzheimer disease. Arch. Neurol., 58, 487–92CrossRefGoogle ScholarPubMed
In't Veld, B. A., Ruitenberg, A., Hofman, A., Launer, L. J., Duijn, C. M. & Stijnen, T. (2001). Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease. N. Engl. J. Med., 345, 1515–21CrossRefGoogle Scholar
Janus, C., Pearson, J., McLaurin, J., Mathews, P. M., Jiang, Y. & Schmidt, S. D. (2000). A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature, 408, 979–82CrossRefGoogle Scholar
Kelley, K. A., Ho, L., Winger, D., Freire-Moar, J., Borelli, C. B. & Aisen, P. S. (1999). Potentiation of excitotoxicity in transgenic mice overexpressing neuronal cyclooxygenase-2. Am. J. Pathol., 155, 995–1004CrossRefGoogle ScholarPubMed
Kujubu, D. A., Fletcher, B. S., Varnum, B. C., Lim, R. W. & Herschman, H. R. (1991). TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J. Biol. Chem., 266, 12866–72Google ScholarPubMed
Levi, G., Minghetti, L. & Aloisi, F. (1998). Regulation of prostanoid synthesis in microglial cells and effects of prostaglandin E2 on microglial functions. Biochimie, 80, 899–904CrossRefGoogle Scholar
Lim, G. P., Yang, F., Chu, T., Chen, P., Beech, W. & Teter, B. (2000). Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J. Neurosci., 20, 5709–14CrossRefGoogle Scholar
Luterman, J. D., Haroutunian, V., Yemul, S., Ho, L., Purohit, D. & Aisen, P. S. (2000). Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Arch. Neurol., 57, 1153–60CrossRefGoogle ScholarPubMed
Mandelkow, E. M. & Mandelkow, E. (1998). Tau in Alzheimer's disease. Trends Cell Biol., 8, 425–7CrossRefGoogle ScholarPubMed
McGeer, P. L., Schulzer, M. & McGeer, E. G. (1996). Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies. Neurology, 47, 425–32CrossRefGoogle ScholarPubMed
Mirjany, M., Ho, L. & Pasinetti, G. M. (2002). Role of cyclooxygenase-2 in neuronal cell cycle activity and glutamate-mediated excitotoxicity. J. Pharmacol. Exp. Ther., 301, 494–500CrossRefGoogle ScholarPubMed
Morgan, D., Diamond, D. M., Gottschall, P. E., Ugen, K. E., Dickey, C. & Hardy, J. (2000). A beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature, 408, 982–5CrossRefGoogle Scholar
Morris, J. C. (1993). The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology, 43, 2412–14CrossRefGoogle ScholarPubMed
Mukherjee, P. & Pasinetti, G. M. (2001). Complement anaphylatoxin C5a neuroprotects through mitogen activated protein kinase dependent inhibition of caspase 3. J. Neurochem., 76, 1–8Google Scholar
O'Banion, M. K., Winn, V. D. & Young, D. A. (1992). cDNA cloning and functional activity of a glucocorticoid-regulated inflammatory cyclooxygenase. Proc. Natl Acad. Sci. USA, 89, 4888–92CrossRefGoogle ScholarPubMed
Oka, A. & Takashima, S. (1997). Induction of cyclo-oxygenase 2 in brains of patients with Down's syndrome and dementia of Alzheimer type: specific localization in affected neurones and axons. NeuroReport, 8, 1161–4CrossRefGoogle ScholarPubMed
Pasinetti, G. M. (1998). Cyclooxygenase and inflammation in Alzheimer's disease: experimental approaches and clinical interventions. J. Neurosci. Res., 54, 1–63.0.CO;2-M>CrossRefGoogle ScholarPubMed
Pasinetti, G. M. & Aisen, P. S. (1998). Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer's disease brain. Neuroscience, 87, 319–24CrossRefGoogle ScholarPubMed
Pasinetti, G. M. & Pompl, P. (2002). Inflammation and Alzheimer's disease: are we well-ADAPTed?Lancet Neurol., 1, 403–4CrossRefGoogle Scholar
Pasinetti, G. M., Ho, L. & Pompl, P. (2002a). Amyloid immunization in Alzheimer's disease: do we promote amyloid scavenging at the cost of inflammatory degeneration?Neurobiol. Agin., 23, 665–6CrossRefGoogle Scholar
Pasinetti, G. M., Ho, L. & Pompl, P. (2002b). AN1792 vaccination immunotherapy in Alzheimer's disease: the case of a therapy before its time. Neurobiol Aging, 23, 683–4CrossRefGoogle Scholar
Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G. & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol., 56, 303–8CrossRefGoogle ScholarPubMed
Pompl, P. N., Yemul, S., Xiang, Z.et al. (2003). Caspase gene expression in the brain as a function of the clinical progression of Alzheimer's disease. Arch. Neurol., 60, 369–76CrossRefGoogle Scholar
Qin, W., Ho, L., Pompl, P. N.et al. (2003). Cyclooxygenase (COX)-2 and COX-1 potentiate beta-amyloid peptide generation through mechanisms that involve gamma secretase activity. J. Biol. Chem., 278, 50970–7CrossRefGoogle ScholarPubMed
Raina, A. K., Zhu, X., Rottkamp, C. A., Monteiro, M., Takeda, A. & Smith, M. A. (2000). Cyclin' toward dementia: cell cycle abnormalities and abortive oncogenesis in Alzheimer disease. J. Neurosci. Res., 61, 128–333.0.CO;2-H>CrossRefGoogle ScholarPubMed
Rogers, J., Kirby, L. C., Hempelman, S. R., Berry, D. L., McGeer, P. L. & Kaszniak, A. W. (1993). Clinical trial of indomethacin in Alzheimer's disease. Neurology, 43, 1609–11CrossRefGoogle ScholarPubMed
Scharf, S., Mander, A., Ugoni, A., Vajda, F. & Christophidis, N. (1993). A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer's disease. Neurology, 53, 197–201CrossRefGoogle Scholar
Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H. & Guido, T. (1999). Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 400, 173–7CrossRefGoogle ScholarPubMed
Selkoe, D. J. (2001). Alzheimer's disease: genes, proteins, and therapy. Physiol Rev., 81, 741–66CrossRefGoogle ScholarPubMed
Shah, Y., Tangalos, E. G. & Petersen, R. C. (2000). Mild cognitive impairment. When is it a precursor to Alzheimer's disease?Geriatrics, 55, 62, 65–8Google ScholarPubMed
Shiff, S. J., Koutsos, M. I., Qiao, L. & Rigas, B. (1996). Nonsteroidal antiinflammatory drugs inhibit the proliferation of colon adenocarcinoma cells: effects on cell cycle and apoptosis. Exp. Cell Res., 222, 179–88CrossRefGoogle ScholarPubMed
Spielman, L., Winger, D., Ho, L., Aisen, P. S., Shohami, E. & Pasinetti, G. M. (2002). Induction of the complement component C1qB in brain of transgenic mice with neuronal overexpression of human cyclooxygenase-2. Acta Neuropathol.(Berl.), 103, 157–62CrossRefGoogle Scholar
Sramek, J. J., Veroff, A. E. & Cutler, N. R. (2001). The status of ongoing trials for mild cognitive impairment. Expert. Opin. Investig. Drug., 10, 741–52CrossRefGoogle ScholarPubMed
Stewart, W. F., Kawas, C., Corrada, M. & Metter, E. J. (1997). Risk of Alzheimer's disease and duration of NSAID use. Neurology, 48, 626–32CrossRefGoogle ScholarPubMed
Ulvestad, E., Williams, K., Matre, R., Nyland, H., Olivier, A. & Antel, J. (1994). Fc receptors for IgG on cultured human microglia mediate cytotoxicity and phagocytosis of antibody-coated targets. J. Neuropathol. Exp. Neurol., 53, 27–36CrossRefGoogle ScholarPubMed
Vane, J. R. & Botting, R. M. (1995). New insights into the mode of action of anti-inflammatory drugs. Inflamm. Res., 44, 1–10CrossRefGoogle ScholarPubMed
Warner, T. D., Giuliano, F., Vojnovic, I., Bukasa, A., Mitchell, J. A. & Vane, J. R. (1999). Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc. Natl. Acad. Sci., USA, 96, 7563–8CrossRefGoogle ScholarPubMed
Webster, S., O'Barr, S. & Rogers, J. (1994). Enhanced aggregation and beta structure of amyloid beta peptide after coincubation with C1q. J. Neurosci. Res., 39, 448–56CrossRefGoogle ScholarPubMed
Weggen, S., Eriksen, J. L., Das, P., Sagi, S. A., Wang, R. & Pietrzik, C. U. (2001). A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature, 414, 212–16CrossRefGoogle ScholarPubMed
Xiang, Z., Ho, L., Yemul, S.et al. (2002). Cyclooxygenase-2 promotes amyloid plaque deposition in a mouse model of Alzheimer's disease neuropathology. Gene Expression, 10, 271–8CrossRefGoogle Scholar
Yasojima, K., Schwab, C., McGeer, E. G. & McGeer, P. L. (1999). Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res., 830, 226–36CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×