Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T03:09:19.267Z Has data issue: false hasContentIssue false

5 - Glutamate transporters

from Part I - Basic aspects of neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Davide Trotti
Affiliation:
Department of Neurology, Massachusetts General Hospital Harvard Medical School, Charlestown, MS, USA
Stuart L. Gibb
Affiliation:
Massachusetts General Hospital Harvard Medical School, Charlestown, MS, USA
Get access

Summary

Introduction

In the central nervous system (CNS) of mammals, glutamate acts as a chemical transmitter of excitatory signals by binding to different glutamate receptors and activating a multitude of highly integrated molecular pathways. Termination of this excitatory neurotransmission occurs via re-uptake of glutamate by specialized high affinity transporters capable of maintaining glutamate at ∼1 μM levels in the synaptic cleft. At higher concentrations, glutamate can also act as neurotoxin causing degeneration and death of neurons (Choi, 1992). This event is known as excitotoxicity and contributes to many chronic and acute neurodegenerative diseases. Therefore, glutamate homeostasis and the regulation of glutamate transporter abundance and function are a key element for the normal brain function.

High affinity, Na+-dependent glutamate transporters: localization, functional properties and topology

Molecular cloning has identified five different subtypes of Na+-dependent glutamate transporters, termed EAAT1–5 (excitatory amino acid transporters 1–5; nomenclature used for human subtypes). At present, two different nomenclatures are in use in the literature to indicate human and rodent isoforms (Table 5.1). However, the homologues show a high degree of interspecies conservation (>95%) and do not differ functionally. The gene names for the human transporter are as follows: EAAT3 or SLC1A1; EAAT2 or SLC1A2; EAAT1 or SLC1A3; EAAT4 or SLC1A4; EAAT5 or SLC1A5. The acronym SLC1 refers to ‘Solute Carrier family’ number 1 and A1 to family member number 1.

Localization

Immunohistochemistry studies revealed that the glutamate transporters EAAT1 and EAAT2 are localized to astroglial membranes that immediately oppose synaptic cleft regions of the neuropil.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 57 - 64
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K. & Misawa, M. (2003). Amyloid beta protein enhances the clearance of extracellular L-glutamate by cultured rat cortical astrocytes. Neurosci. Res., 45, 25–31CrossRefGoogle ScholarPubMed
An, S. J., Kang, T. C., Park, S. K.et al. (2002). Oxidative DNA damage and alteration of glutamate transporter expressions in the hippocampal Ca1 area immediately after ischemic insult. Mol. Cell., 13, 476–80Google ScholarPubMed
Aoki, M., Lin, C. L., Rothstein, J. D.et al. (1998). Mutations in the glutamate transporter EAAT2 gene do not cause abnormal EAAT2 transcripts in amyotrophic lateral sclerosis. Ann. Neurol., 43, 645–53CrossRefGoogle Scholar
Aschner, M. (1996). Astrocytes as modulators of mercury-induced neurotoxicity. Neurotoxicology, 17, 663–9Google ScholarPubMed
Aschner, M. (2001). Mercury toxicity. J. Pediatr., 138, 450–1CrossRefGoogle ScholarPubMed
Aschner, M., Yao, C. P., Allen, J. W. & Tan, K. H. (2000). Methylmercury alters glutamate transport in astrocytes. Neurochem. Int., 37, 199–206CrossRefGoogle ScholarPubMed
Behrens, P. F., Franz, P., Woodman, B., Lindenberg, K. S. & Landwehrmeyer, G. B. (2002). Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain, 125, 1908–22CrossRefGoogle ScholarPubMed
Brasnjo, G. & Otis, T. S. (2001). Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long-term depression. Neuron, 31, 607–16CrossRefGoogle ScholarPubMed
Bristol, L. A. & Rothstein, J. D. (1996). Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Ann. Neurol., 39, 676–9CrossRefGoogle ScholarPubMed
Bruijn, L. I., Becher, M. W., Lee, M. K.et al. (1997). ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron, 18, 327–38CrossRefGoogle ScholarPubMed
Chen, W., Aoki, C., Mahadomrongkul, V.et al. (2002). Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain. J. Neurosci., 22, 2142–52CrossRefGoogle ScholarPubMed
Choi, D. W. (1992). Excitotoxic cell death. J. Neurobiol., 23, 1261–76CrossRefGoogle ScholarPubMed
Clements, J. D., Lester, R. A., Tong, G., Jahr, C. E. & Westbrook, G. L. (1992). The time course of glutamate in the synaptic cleft. Science, 258, 1498–501CrossRefGoogle ScholarPubMed
Danbolt, N. C. (2001). Glutamate uptake. Prog. Neurobiol., 65, 1–105CrossRefGoogle ScholarPubMed
Eskandari, S., Kreman, M., Kavanaugh, M. P., Wright, E. M. & Zampighi, G. A. (2000). Pentameric assembly of a neuronal glutamate transporter. Proc. Natl Acad. Sci., USA, 97, 8641–6CrossRefGoogle ScholarPubMed
Flowers, J. M., Powell, J. F., Leigh, P. N., Andersen, P. & Shaw, C. E. (2001). Intron 7 retention and exon 9 skipping EAAT2 mRNA variants are not associated with amyotrophic lateral sclerosis. Ann. Neurol., 49, 643–9CrossRefGoogle Scholar
Gendreau, S., Voswinkel, S., Torres-Salazar, D.et al. (2004). A trimeric quaternary structure is conserved in bacterial and human glutamate transporters. J. Biol. Chem., 279, 39505–12CrossRefGoogle ScholarPubMed
Grewer, C., Watzke, N., Wiessner, M. & Rauen, T. (2000). Glutamate translocation of the neuronal glutamate transporter EAAC1 occurs within milliseconds. Proc. Natl Acad. Sci., USA 97, 9706–11CrossRefGoogle ScholarPubMed
Hamann, M., Rossi, D. J., Marie, H. & Attwell, D. (2002). Knocking out the glial glutamate transporter GLT-1 reduces glutamate uptake but does not affect hippocampal glutamate dynamics in early simulated ischaemia. Eur. J. Neurosci., 15, 308–14CrossRefGoogle Scholar
Harada, M. (1995). Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol., 25, 1–24CrossRefGoogle ScholarPubMed
Harris, M. E., Wang, Y., Pedigo, N. W., , K.Jr., Butterfield, D. A. & Carney, J. M. (1996). Amyloid beta peptide (25–35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cultures. J. Neurochem., 67, 277–86CrossRefGoogle ScholarPubMed
Hazell, A. S., Itzhak, Y., Liu, H. & Norenberg, M. D. (1997). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) decreases glutamate uptake in cultured astrocytes. J. Neurochem., 68, 2216–19CrossRefGoogle ScholarPubMed
Ikegaya, Y., Matsuura, S., Ueno, S.et al. (2002). Beta-amyloid enhances glial glutamate uptake activity and attenuates synaptic efficacy. J. Biol. Chem., 277, 32180–6CrossRefGoogle ScholarPubMed
Jackson, M., Song, W., Liu, M. Y.et al. (2001). Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature, 410, 89–93CrossRefGoogle ScholarPubMed
Lehre, K. P. & Danbolt, N. C. (1998). The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J. Neurosci., 18, 8751–7CrossRefGoogle ScholarPubMed
Lehre, K. P. & Rusakov, D. A. (2002). Asymmetry of glia near central synapses favors presynaptically directed glutamate escape. Biophys. J. 83, 125–34CrossRefGoogle ScholarPubMed
Levy, L. M., Attwell, D., Hoover, F., Ash, J. F., Bjoras, M. & Danbolt, N. C. (1998a). Inducible expression of the GLT-1 glutamate transporter in a CHO cell line selected for low endogenous glutamate uptake [published erratum appears in FEBS Lett. 1998 May 1;427(1):152]. FEBS Lett., 422, 339–42CrossRefGoogle Scholar
Levy, L. M., Warr, O. & Attwell, D. (1998b). Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J. Neurosci., 18, 9620–8CrossRefGoogle Scholar
Li, S., Mallory, M., Alford, M., Tanaka, S. & Masliah, E. (1997). Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J. Neuropathol. Exp. Neurol., 56, 901–11CrossRefGoogle ScholarPubMed
Lievens, J. C., Woodman, B., Mahal, A.et al. (2001). Impaired glutamate uptake in the R6 Huntington's disease transgenic mice. Neurobiol. Dis., 8, 807–21CrossRefGoogle ScholarPubMed
Lin, C. I., Orlov, I., Ruggiero, A. M.et al. (2001). Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3–18. Nature, 410, 84–8CrossRefGoogle ScholarPubMed
Lin, C.-L. G., Bristol, L. A., Jin, L.et al. (1998). Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron, 20, 589–602CrossRefGoogle Scholar
Malm, O., Branches, F. J., Akagi, H.et al. (1995). Mercury and methylmercury in fish and human hair from the Tapajos river basin. Brazil. Sci. Total Environ., 175, 141–50CrossRefGoogle Scholar
Masliah, E., Alford, M., Mallory, M., Rockenstein, E., Moechars, D. & Leuven, F. (2000). Abnormal glutamate transport function in mutant amyloid precursor protein transgenic mice. Exp. Neurol., 163, 381–7CrossRefGoogle ScholarPubMed
Meyer, T., Fromm, A., Munch, C.et al. (1999). The RNA of the glutamate transporter EAAT2 is variably spliced in amyotrophic lateral sclerosis and normal individuals. J. Neurol. Sci., 170, 45–50CrossRefGoogle ScholarPubMed
Nagaraja, T. N. & Brookes, N. (1996). Mercuric chloride uncouples glutamate uptake from the countertransport of hydroxyl equivalents. Am. J. Physiol., 271, C1487–93CrossRefGoogle ScholarPubMed
Noda, M., Nakanishi, H. & Akaike, N. (1999). Glutamate release from microglia via glutamate transporter is enhanced by amyloid-beta peptide. Neuroscience, 92, 1465–74CrossRefGoogle ScholarPubMed
O'Shea, R. D., Fodera, M. V., Aprico, K.et al. (2002). Evaluation of drugs acting at glutamate transporters in organotypic hippocampal cultures: new evidence on substrates and blockers in excitotoxicity. Neurochem. Res., 27, 5–13CrossRefGoogle ScholarPubMed
Park, S. T., Lim, K. T., Chung, Y. T. & Kim, S. U. (1996). Methylmercury-induced neurotoxicity in cerebral neuron culture is blocked by antioxidants and NMDA receptor antagonists. Neurotoxicology, 17, 37–45Google ScholarPubMed
Peghini, P., Janzen, J. & Stoffel, W. (1997). Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J., 16, 3822–32CrossRefGoogle ScholarPubMed
Poitry-Yamate, C. L., Vutskits, L. & Rauen, T. (2002). Neuronal-induced and glutamate-dependent activation of glial glutamate transporter function. J. Neurochem., 82, 987–97CrossRefGoogle ScholarPubMed
Rao, V. L., Bowen, K. K. & Dempsey, R. J. (2001). Transient focal cerebral ischemia down-regulates glutamate transporters GLT-1 and EAAC1 expression in rat brain. Neurochem. Res., 26, 497–502Google ScholarPubMed
Robinson, M. B. (2002). Regulated trafficking of neurotransmitter transporters: common notes but different melodies. J. Neurochem., 80, 1–11CrossRefGoogle ScholarPubMed
Rosen, D. R., Siddique, T., Patterson, D.et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59–62CrossRefGoogle ScholarPubMed
Rossi, D. J., Oshima, T. & Attwell, D. (2000). Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature, 403, 316–21CrossRefGoogle ScholarPubMed
Rothstein, J. D. (1995a). Excitotoxic mechanisms in the pathogenesis of amyotrophic lateral sclerosis. Adv. Neurol., 68, 7–20Google Scholar
Rothstein, J. D. (1995b). Excitotoxicity and neurodegeneration in amyotrophic lateral sclerosis. Clin. Neurosci., 3, 348–59Google Scholar
Rothstein, J. D., Martin, L. J. & Kuncl, R. W. (1992). Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis [see comments]. N. Engl. J. Med., 326, 1464–8CrossRefGoogle Scholar
Rothstein, J. D., Jin, L., Dykes-Hoberg, M. & Kuncl, R. W. (1993). Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc. Natl Acad. Sci., USA, 90, 6591–5CrossRefGoogle ScholarPubMed
Rothstein, J. D., Kammen, M., Levey, A. I., Martin, L. J. & Kuncl, R. W. (1995). Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol., 38, 73–84CrossRefGoogle ScholarPubMed
Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A.et al. (1996). Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron, 16, 675–86CrossRefGoogle Scholar
Rusakov, D. A. & Lehre, K. P. (2002). Perisynaptic asymmetry of glia: new insights into glutamate signalling. Trends Neurosci., 25, 492–4CrossRefGoogle ScholarPubMed
Schmitt, A., Asan, E., Lesch, K. P. & Kugler, P. (2002). A splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons: cloning and localization in rat nervous system. Neuroscience, 109, 45–61CrossRefGoogle ScholarPubMed
Seal, R. P. & Amara, S. G. (1999). Excitatory amino acid transporters: a family in flux. Annu. Rev. Pharmacol. Toxicol., 39, 431–56CrossRefGoogle ScholarPubMed
Slotboom, D. J., Konings, W. N. & Lolkema, J. S. (2001). Glutamate transporters combine transporter- and channel-like features. Trends Biochem. Sci., 26, 534–9CrossRefGoogle ScholarPubMed
Tanaka, K., Watase, K., Manabe, T.et al. (1997). Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science, 276, 1699–702CrossRefGoogle ScholarPubMed
Tempia, F., Miniaci, M. C., Anchisi, D. & Strata, P. (1998). Postsynaptic current mediated by metabotropic glutamate receptors in cerebellar Purkinje cells. J. Neurophysiol., 80, 520–8CrossRefGoogle ScholarPubMed
Trotti, D., Nussberger, S., Volterra, A. & Hediger, M. A. (1997). Differential modulation of the uptake currents by redox interconversion of cysteine residues in the human neuronal glutamate transporter EAAC1. Eur. J. Neurosci., 9, 2207–12CrossRefGoogle ScholarPubMed
Trotti, D., Rolfs, A., Danbolt, N. C., Brown, R. H., Jr. & Hediger, M. A. (1999). SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter [published erratum appears in Nat. Neurosci. 1999 Sep;2(9):848]. Nat. Neurosci., 2, 427–33CrossRefGoogle Scholar
Trotti, D., Aoki, M., Pasinelli, P.et al. (2000). Amyotrophic lateral sclerosis-linked glutamate transporter mutant has impaired glutamate clearance capacity. J. Biol. Chem., 276, 576–82CrossRefGoogle Scholar
Volterra, A., Trotti, D. & Racagni, G. (1994). Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol. Pharmacol., 46, 986–92Google ScholarPubMed
Wadiche, J. I., Arriza, J. L., Amara, S. G. & Kavanaugh, M. P. (1995). Kinetics of a human glutamate transporter. Neuron, 14, 1019–27CrossRefGoogle ScholarPubMed
Wadiche, J. I. & Kavanaugh, M. P. (1998). Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J. Neurosci., 18, 7650–61CrossRefGoogle ScholarPubMed
Watanabe, T., Morimoto, K., Hirao, T., Suwaki, H., Watase, K. & Tanaka, K. (1999). Amygdala-kindled and pentylenetetrazole-induced seizures in glutamate transporter GLAST-deficient mice. Brain Res., 845, 92–6CrossRefGoogle ScholarPubMed
Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. (2004). Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature, 431, 811–18CrossRefGoogle ScholarPubMed
Zerangue, N. & Kavanaugh, M. P. (1996). Flux coupling in a neuronal glutamate transporter. Nature, 383, 634–7CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Glutamate transporters
    • By Davide Trotti, Department of Neurology, Massachusetts General Hospital Harvard Medical School, Charlestown, MS, USA, Stuart L. Gibb, Massachusetts General Hospital Harvard Medical School, Charlestown, MS, USA
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Glutamate transporters
    • By Davide Trotti, Department of Neurology, Massachusetts General Hospital Harvard Medical School, Charlestown, MS, USA, Stuart L. Gibb, Massachusetts General Hospital Harvard Medical School, Charlestown, MS, USA
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Glutamate transporters
    • By Davide Trotti, Department of Neurology, Massachusetts General Hospital Harvard Medical School, Charlestown, MS, USA, Stuart L. Gibb, Massachusetts General Hospital Harvard Medical School, Charlestown, MS, USA
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.006
Available formats
×