Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T03:10:49.787Z Has data issue: false hasContentIssue false

8 - Neurotrophic factors

from Part I - Basic aspects of neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Michael Sendtner
Affiliation:
Institute for Clinical Neurobiology, Würzburg, Germany
Get access

Summary

Introduction

During development of higher vertebrates, many types of neurons including spinal and bulbar motoneurons are generated in excess. When developing motoneurons become postmitotic, they grow out axons and make contact with their target tissue, the skeletal muscle. Subsequently, about 50% of the motoneurons are lost during a critical process, which is called physiological motoneuron cell death. This phenomenon has been the focus of research for about a century and has led to the identification of neurotrophic factors that regulate survival of motoneurons during this developmental period. Motoneuron cell death is also observed in vitro when these neurons are isolated from the embryonic avian or rodent spinal cord. These cultured motoneurons have been a useful tool for studying basic mechanisms underlying neuronal degeneration. Such studies have revealed insights into signaling pathways that modulate survival during development and that might be disturbed under pathophysiological conditions in neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). However, specific differences in mechanisms that regulate survival of developing and postnatal motoneurons have also been identified. These findings could help to develop new therapeutic strategies that could counteract the pathophysiological processes underlying ALS.

Developmental motoneuron cell death

Viktor Hamburger and other pioneer researchers have shown during the first part of the twentieth century that the developmental cell death of motoneurons is guided by influences provided from the target tissue (Hamburger, 1934, 1958).

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 94 - 107
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aletta, J. M. (1994). Differential effect of NGF and EGF on ERK in neuronally differentiated PC12 cells. NeuroReport, 5, 2090–2CrossRefGoogle ScholarPubMed
Arakawa, Y., Sendtner, M. & Thoenen, H. (1990). Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines. J. Neurosci., 10, 3507–15CrossRefGoogle ScholarPubMed
Baloh, R. H., Tansey, M. G., Golden, J. P.et al. (1997). TrnR2, a novel receptor that mediates neurturin and GDNF signaling through Ret. Neuron, 18, 793–802CrossRefGoogle ScholarPubMed
Baloh, R. H., Tansey, M. G., Lampe, P. A.et al. (1998). Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3–RET receptor complex. Neuron, 21, 1291–302CrossRefGoogle ScholarPubMed
Bamji, S. X., Majdan, M. & Pozniak, C. D. (1998). The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol., 140, 911–23CrossRefGoogle ScholarPubMed
Bar-Sagi, D. & Feramisco, J. R. (1985). Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell, 42, 841–8CrossRefGoogle ScholarPubMed
Baxter, R. M., Cohen, P., Obermeier, A., Ullrich, A., Downes, C. P. & Doza, Y. N. (1995). Phosphotyrosine residues in the nerve-growth-factor receptor (Trk-A). Their role in the activation of inositolphospholipid metabolism and protein kinase cascades in phaeochromocytoma (PC12) cells. Eur. J. Biochem., 234, 84–91CrossRefGoogle ScholarPubMed
Bensimon, G., Lacomblez, L., Meininger, V. & ALS-Riluzole Study Group (1994). A controlled trial of riluzole in amyotrophic lateral sclerosis. N. Engl. J. Med., 330, 585–91CrossRefGoogle ScholarPubMed
Borasio, G. D., Markus, A., Wittinghofer, A., Barde, Y. A. & Heumann, R. (1993). Involvement of ras p21 in neurotrophin-induced response of sensory, but not sympathetic neurons. J. Cell Biol., 121, 665–72CrossRefGoogle Scholar
Brunet, A., Bonni, A., Zigmond, M. J.et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96, 857–68CrossRefGoogle ScholarPubMed
Cardone, M. H., Roy, N., Stennicke, H. R.et al. (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science, 282, 1318–21CrossRefGoogle ScholarPubMed
Cattaneo, E. & Pelicci, P. G. (1998). Emerging roles for SH2/PTB-containing Shc adaptor proteins in the developing mammalian brain. Trends Neurosci., 21, 476–81CrossRefGoogle ScholarPubMed
Chao, M., Casaccia-Bonnefil, P., Carter, B., Chittka, A., Kong, H. & Yoon, S. O. (1998). Neurotrophin receptors: mediators of life and death.Brain Res. Rev., 26, 295–301CrossRefGoogle ScholarPubMed
Choi, D. W. (1992). Amyotrophic lateral sclerosis and glutamate – too much of a good thing. N. Engl. J. Med., 326, 1493–5CrossRefGoogle Scholar
Chou, S. M. (1992). Pathology-light microscopy of amyotrophic lateral sclerosis. In Handbook of Amyotrophic Lateral sclerosis, ed. R. A. Smith, New York: Marcel Dekker, Inc., pp. 133–82
Conti, L., Fraja, C., Gulisano, M., Migliaccio, E., Govoni, S. & Cattaneo, E. (1997). Expression and activation of SH2/PTB-containing ShcA adaptor protein reflects the pattern of neurogenesis in the mammalian brain. Proc. Natl Acad. Sci. USA, 94, 8185–90CrossRefGoogle ScholarPubMed
Datta, S. R., Dudek, H., Tao, X.et al. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 91, 231–41CrossRefGoogle ScholarPubMed
Davey, F. & Davies, A. M. (1998). TrkB signaling inhibits p75-mediated apoptosis induced by nerve growth factor in embryonic proprioceptive neurons. Curr. Biol., 8, 915–18CrossRefGoogle Scholar
Dechant, G., Tsoulfas, P., Parada, L. F. & Barde, Y. A. (1997). The neurotrophin receptor p75 binds neurotrophin-3 on sympathetic neurons with high affinity and specificity. J. Neurosci., 17, 5281–7CrossRefGoogle ScholarPubMed
Deckwerth, T. L., Easton, R. M., Knudson, C. M., Korsmeyer, S. J. & Johnson, E. M. Jr. (1998). Placement of the BCL2 family member BAX in the death pathway of sympathetic neurons activated by trophic factor deprivation. Exp. Neurol., 152, 150–62CrossRefGoogle ScholarPubMed
Deng, H.-X., Hentati, A., Tainer, J. A.et al. (1993). Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science, 261, 1047–51CrossRefGoogle ScholarPubMed
Deshmukh, M. & Johnson, E. M. Jr. (1998). Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c [see comments]. Neuron, 21, 695–705CrossRefGoogle Scholar
Devereaux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. (1997). X-linked IAP is a direct inhibitor of cell-death proteases. Nature, 388, 300–4CrossRefGoogle Scholar
Deveraux, Q. L., Roy, N., Stennicke, H. R.et al. (1998). IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J., 17, 2215–23CrossRefGoogle ScholarPubMed
Digby, M. R., Kimpton, W. G., York, J. J., Connick, T. E. & Lowenthal, J. W. (1996). ITA, a vertebrate homologue of IAP that is expressed in T lymphocytes. DNA Cell Biol., 15, 981–8CrossRefGoogle ScholarPubMed
Dubois-Dauphin, M., Frankowski, H., Tsujimoto, Y., Huarte, J. & Martinou, J.-C. (1994). Neonatal motoneurons overexpressing the bcl-2 protooncogene in transgenic mice are protected from axotomy-induced cell death. Proc. Natl Acad. Sciences, USA, 91, 3309–13CrossRefGoogle ScholarPubMed
Dudek, H., Datta, S. R., Franke, T. F.et al. (1997). Regulation of neuronal survival by the serine-threonine protein kinase Akt [see comments]. Science, 275, 661–5CrossRefGoogle Scholar
Durham, H. D., Roy, J., Dong, L. & Figlewicz, D. A. (1997). Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J. Neuropathol. Exp. Neurol., 56, 523–30CrossRefGoogle Scholar
Ebens, A., Brose, K., Leonardo, E. D.et al. (1996). Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron, 17, 1157–72CrossRefGoogle Scholar
Elson, G. C., Lelievre, E., Guillet, C.et al. (2000). CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex. Nat. Neurosci., 3, 867–72CrossRefGoogle Scholar
Ernfors, P., Hallböök, F., Ebendal, T.et al. (1988). Developmental and regional expression of β-nerve growth factor receptor mRNA in the chick and rat. Neuron, 1, 983–96CrossRefGoogle ScholarPubMed
Estevez, A. G., Spear, N., Manuel, S. M., Barbeito, L., Radi, R. & Beckman, J. S. (1998a). Role of endogenous nitric oxide and peroxynitrite formation in the survival and death of motor neurons in culture. Prog. Brain Res., 118, 269–80CrossRefGoogle Scholar
Estevez, A. G., Spear, N., Manuel, S. M.et al. (1998b). Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J. Neurosci., 18, 923–31CrossRefGoogle Scholar
Estevez, A. G., Crow, J. P., Sampson, J. B.et al. (1999). Induction of nitric oxide-dependent apoptosis in motor neurons by zinc- deficient superoxide dismutase. Science, 286, 2498–500Google ScholarPubMed
Ferri, C. C., Moore, F. A. & Bisby, M. A. (1998). Effects of facial nerve injury on mouse motoneurons lacking the p75 low-affinity neurotrophin receptor. J. Neurobiol., 34, 1–93.0.CO;2-C>CrossRefGoogle ScholarPubMed
Finkbeiner, S., Tavazoie, S. F., Maloratsky, A., Jacobs, K. M., Harris, K. M. & Greenberg, M. E. (1997). CREB: a major mediator of neuronal neurotrophin responses. Neuron, 19, 1031–47CrossRefGoogle Scholar
Frade, J. M. & Barde, Y. A. (1998). Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron, 20, 35–42CrossRefGoogle ScholarPubMed
Frade, J. M. & Barde, Y. A. (1999). Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development, 126, 683–90Google Scholar
Frade, J. M., Rodriguez Tebar, A. & Barde, Y. A. (1996). Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature, 383, 166–8CrossRefGoogle ScholarPubMed
Friedlander, R. M., Brown, R. H., Gagliardini, V., Wang, J. & Yuan, J. (1997). Inhibition of ICE slows ALS in mice [letter] [published erratum appears in Nature 1998 Apr 9;392(6676):560]. Nature 388, 31CrossRefGoogle Scholar
Friedman, W. J. & Greene, L. A. (1999). Neurotrophin signaling via Trks and p75. Exp. Cell Res., 253, 131–42CrossRefGoogle ScholarPubMed
Gravel, C., Götz, R., Lorrain, A. & Sendtner, M. (1997). Adenoviral gene transfer of ciliary neurotrophic factor and brain-derived neurotrophic factor leads to longterm survival of axotomized motoneurons. Nat. Med., 3, 765–70CrossRefGoogle Scholar
Gredal, O., Werdelin, L., Bak, S.et al. (1997). A clinical trial of dextromethorphan in amyotrophic lateral sclerosis. Acta Neurol. Scand., 96, 8–13CrossRefGoogle ScholarPubMed
Greene, L. A. & Kaplan, D. R. (1995). Early events in neurotrophin signaling via Trk and p75 receptors. Curr. Opin. Neurobiol., 5, 579–87CrossRefGoogle Scholar
Grewal, S. S., Horgan, A. M., York, R. D., Withers, G. S., Banker, G. A. & Stork, P. J. (2000). Neuronal calcium activates a rap1 and b-raf signaling pathway via the cyclic adenosine monophosphate-dependent protein kinase. J. Biol. Chem., 275, 3722–8CrossRefGoogle ScholarPubMed
Grieshammer, U., Lewandoski, M., Prevette, D.et al. (1998). Muscle-specific cell ablation conditional upon Cre-mediated DNA recombination in transgenic mice leads to massive spinal and cranial motoneuron loss neuronal cell death. Neuron, 20, 633–47Google Scholar
Gurney, M. E., Pu, H., Chiu, A. Y.et al. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science, 264, 1772–5CrossRefGoogle ScholarPubMed
Hamburger, V. (1934). The effects of wing bud extirpation on the development of the central nervous system in chick embryos. J. Exp. Zool., 68, 449–94CrossRefGoogle Scholar
Hamburger, V. (1958). Regression versus peripheral control of differentiation in motor hyperplasia. Am. J. Anat., 102, 365–10CrossRefGoogle Scholar
Henderson, C. E., Camu, W., Mettling, C.et al. (1993). Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature, 363, 266–70CrossRefGoogle ScholarPubMed
Henderson, C. E., Phillips, H. S., Pollock, R. A.et al. (1994). GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science, 266, 1062–4CrossRefGoogle ScholarPubMed
Hughes, R. A., Sendtner, M. & Thoenen, H. (1993). Members of several gene families influence survival of rat motoneurons in vitro and in vivo. J. Neurosci. Res., 36 (6), 663–71CrossRefGoogle ScholarPubMed
Ikeda, K., Klinkosz, B., Greene, T.et al. (1995). Effects of brain-derived neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Ann. Neurol., 37, 505–11CrossRefGoogle ScholarPubMed
Jablonka, S., Schrank, B., Kralewski, M., Rossoll, W. & Sendtner, M. (2000). Reduced survival motor neuron (Smn) gene dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III. Hum. Mol. Genet., 9, 341–6CrossRefGoogle ScholarPubMed
Kalb, R. G., Lidow, M. S., Halsted, M. & Hockfield, S. (1992). N-Methyl-D-aspartat e receptors are transiently expressed in the developing spinal cord ventral horn. Proc. Natl Acad. Sci. USA, 89, 8502–6CrossRefGoogle Scholar
Kerkhoff, H., Jennekens, F. G. I., Troost, D. & Veldman, H. (1991). Nerve growth factor receptor immunostaining in the spinal cord and peripheral nerves in amyotrophic lateral sclerosis. Acta Neuropathol.(Berl.), 81, 649–56CrossRefGoogle ScholarPubMed
Klein, R. D., Sherman, D., Ho, W. H.et al. (1997). A GPI-linked protein that interacts with Ret to form a candidate neurturin receptor. Nature, 387, 717–21CrossRefGoogle Scholar
Knudson, C. M., Tung, K. S., Tourtellotte, W. G., Brown, G. A. & Korsmeyer, S. J. (1995). Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science, 270, 96–9CrossRefGoogle ScholarPubMed
Kostic, V., Jackson-Lewis, V., Bilbao, F., Dubois-Dauphin, M. & Przedborski, S. (1997). Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science, 277, 559–62CrossRefGoogle Scholar
Levi-Montalcini, R. (1950). The origin and development of the visceral system in the spinal cord of the chick embryo. J. Morphol., 253–84
Mahadeo, D., Kaplan, L., Chao, M. V. & Hempstead, B. L. (1994). High affinity nerve growth factor binding displays a faster rate of association than p140trk binding. Implications for multi-subunit polypeptide receptors. J. Biol. Chem., 269, 6884–91Google ScholarPubMed
Majdan, M., Lachance, C., Gloster, A.et al. (1997). Transgenic mice expressing the intracellular domain of the p75 neurotrophin receptor undergo neuronal apoptosis. J. Neurosci., 17, 6988–98CrossRefGoogle ScholarPubMed
Martinou, J.-C., Dubois-Dauphin, M., Staple, J. K.et al. (1994). Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron, 13, 1017–30CrossRefGoogle ScholarPubMed
Meakin, S. O. & Shooter, E. M. (1992). The nerve growth factor family of receptors. Trends Neurosci., 15, 323–31CrossRefGoogle ScholarPubMed
Metzger, F., Wiese, S. & Sendtner, M. (1998). Effect of glutamate on dendritic growth in embryonic rat motoneurons. J. Neurosci., 18, 1735–42CrossRefGoogle ScholarPubMed
Metzger, F., Kulik, A., Sendtner, M. & Ballanyi, K. (2000). Contribution of Ca2+-permeabl e AMPA/KA receptors to glutamate-induced Ca2+ rise in embryonic lumbar motoneurons in situ. J. Neurophysiol., 83, 50–9CrossRefGoogle Scholar
Metzstein, M. M., Hengartner, M. O., Tsung, N., Ellis, R. E., , & Horvitz, H. R. (1996). Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature, 382, 545–7CrossRefGoogle ScholarPubMed
Meyer Franke, A., Kaplan, M. R., Pfrieger, F. W. & Barres, B. A. (1995). Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron, 15, 805–19CrossRefGoogle ScholarPubMed
Michaelidis, T. M., Sendtner, M., Cooper, J. D.et al. (1996). Inactivation of the bcl-2 gene results in progressive degeneration of motoneurons, sensory and sypathetic neurons during early postnatal development. Neuron, 17, 75–89CrossRefGoogle Scholar
Milbrandt, J., Sauvage, F. J., Fahrner, T. J.et al. (1998). Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron, 20, 245–53CrossRefGoogle ScholarPubMed
Minichiello, L., Casagranda, F., Tatche, R. S.et al. (1998). Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses. Neuron, 21, 335–45CrossRefGoogle ScholarPubMed
Mitsumoto, H., Ikeda, K., Klinkosz, B., Cedarbaum, J. M., Wong, V. & Lindsay, R. M. (1994). Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science, 265, 1107–10CrossRefGoogle ScholarPubMed
Miyata, Y., Kashihara, Y., Homma, S. & Kuno, M. (1986). Effects of nerve growth factor on the survival and synaptic function of Ia sensory neurons axotomized in neonatal rats. J. Neurosci., 6, 2012–18CrossRefGoogle ScholarPubMed
Monani, U. R., Sendtner, M., Coovert, D. D.et al. (2000). The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(–/–) mice and results in a mouse with spinal muscular atrophy [In Process Citation]. Hum. Mol. Genet., 9, 333–9CrossRefGoogle Scholar
Nagata, S. (1997). Apoptosis by death factor. Cell, 88, 355–65CrossRefGoogle ScholarPubMed
Nakamura, T., Sanokawa, R., Sasaki, Y., Ayusawa, D., Oishi, M. & Mori, N. (1996). N-Shc: a neural-specific adapter molecule that mediates signaling from neurotrophin/Trk to Ras/Mapk pathway. Oncogene, 13, 1111–21Google ScholarPubMed
Nakashima, K. & Taga, T. (1998). gp130 and the IL-6 family of cytokines: signaling mechanisms and thrombopoietic activities. Semin. Hematol., 35, 210–21Google ScholarPubMed
Newmeyer, D. D. and Green, D. R. (1998). Surviving the cytochrome seas [comment]. Neuron, 21, 653–5CrossRefGoogle Scholar
Novak, K. D., Prevette, D., Wang, S., Gould, T. W. & Oppenheim, R. W. (2000). Hepatocyte growth factor/scatter factor is a neurotrophic survival factor for lumbar but not for other somatic motoneurons in the chick embryo. J. Neurosci., 20, 326–37CrossRefGoogle Scholar
O'Connor, T. M. & Wyttenbach, C. R. (1974). Cell death of the embryonic chick spinal cord. J. Cell Biol., 60, 448–59CrossRefGoogle ScholarPubMed
Obermeier, A., Lammers, R., Wiesmuller, K. H., Jung, G., Schlessinger, J. & Ullrich, A. (1993). Identification of Trk binding sites for SHC and phosphatidylinositol 3′-kinase and formation of a multimeric signaling complex. J. Biol. Chem., 268, 22963–6Google ScholarPubMed
Obermeier, A., Bradshaw, R. A., Seedorf, K., Choidas, A., Schlessinger, J. & Ullrich, A. (1994). Neuronal differentiation signals are controlled by nerve growth factor receptor/Trk binding sites for SHC and PLCgamma. EMBO J., 13, 1585–90Google Scholar
Okado, N. & Oppenheim, R. W. (1984). Cell death of motoneurons in the chick embryo spinal cord. IX. The loss of motoneurons following removal of afferent inputs. J.Neurosci., 4, 1639–52CrossRefGoogle ScholarPubMed
Oppenheim, R. W. (1985). Naturally occurring cell death during neural development. Trends Neurosci., 8, 487–93CrossRefGoogle Scholar
Oppenheim, R. W., Cole, T. & Prevette, D. (1989). Early regional variations in motoneuron numbers arise by differential proliferation in the chick embryo spinal cord. Dev. Biol., 133, 468–74CrossRefGoogle ScholarPubMed
Ozes, O. N., Mayo, L. D., Gustin, J. A., Pfeffer, S. R., Pfeffer, L. M. & Donner, D. B. (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine- threonine kinase. Nature, 401, 82–5CrossRefGoogle ScholarPubMed
Pennica, D., Shaw, K. J., Swanson, T. A.et al. (1995). Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gp130 signaling complex. J. Biol. Chem., 270, 10915–22CrossRefGoogle ScholarPubMed
Qin-We i, Y., Johnson, J., Prevette, D. & Oppenheim, R. W. (1994). Cell death of spinal motoneurons in the chick embryo following deafferentiation: rescue effects of tissue extracts, soluble proteins, and neurotrophic agents. J. Neurosci., 14, 7629–40Google Scholar
Raoul, C., Henderson, C. E. & Pettmann, B. (1999). Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J. Cell Biol., 147, 1049–62CrossRefGoogle ScholarPubMed
Riethmacher, D., Sonnenberg-Riethmacher, E., Brinkmann, V., Vamaai, T., Lewin, G. R. & Birchmeier, C. (1997). Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature, 389, 725–30CrossRefGoogle Scholar
Rodriguez-Tébar, A., Dechant, G. & Barde, Y.-A. (1990). Binding of brain-derived neurotrophic factor to the nerve growth factor receptor. Neuron, 4, 487–92CrossRefGoogle ScholarPubMed
Romashkova, J. A. & Makarov, S. S. (1999). NF-kappaB is a target of AKT in anti-apoptotic PDGF signaling. Nature, 401, 86–90CrossRefGoogle Scholar
Rosen, D. R., Siddique, T., Patterson, D.et al. (1993). Mutation in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59–62CrossRefGoogle ScholarPubMed
Rothstein, J. D. (1995). Excitotoxic mechanisms in the pathogenesis of amyotrophic lateral sclerosis. Adv. Neurol., 68, 7–20Google ScholarPubMed
Roy, N., Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. (1997). The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J., 16, 6914–25CrossRefGoogle ScholarPubMed
Sagot, Y., Tan, S. A., Hammang, J. P., Aebischer, P. & Kato, A. C. (1996). GDNF slows loss of motoneurons but not axonal degeneration or premature death of pmn/pmn mice. J. Neurosci., 16, 2335–41CrossRefGoogle ScholarPubMed
Segal, R. A. & Greenberg, M. E. (1996). Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci., 19, 463–89CrossRefGoogle ScholarPubMed
Senaldi, G., Varnum, B. C., Sarmiento, U.et al. (1999). Novel neurotrophin-1/B cell-stimulating factor-3: a cytokine of the IL- 6 family. Proc. Natl Acad. Sci. USA, 96, 11458–63CrossRefGoogle ScholarPubMed
Sendtner, M. (1998). Neurotrophic factors: effects in modulating properties of the neuromuscular endplate. Cytokine Growth Factor Rev., 9, 1–7CrossRefGoogle ScholarPubMed
Sendtner, M., Holtmann, B., Kolbeck, R., Thoenen, H. & Barde, Y.-A. (1992a). Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature, 360, 757–8CrossRefGoogle Scholar
Sendtner, M., Schmalbruch, H., Stöckli, K. A., Carroll, P., Kreutzberg, G. W. & Thoenen, H. (1992b). Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature, 358, 502–4CrossRefGoogle Scholar
Shi, Y., Wang, W., Yourey, P. A.et al. (1999). Computational EST database analysis identifies a novel member of the neuropoietic cytokine family. Biochem. Biophys. Res. Commun., 262, 132–8CrossRefGoogle ScholarPubMed
Slee, E. A., Harte, M. T., Kluck, R. M.et al. (1999). Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9- dependent manner. J. Cell Biol., 144, 281–92CrossRefGoogle Scholar
Stennicke, H. R., Deveraux, Q. L., Humke, E. W., Reed, J. C., Dixit, V. M. & Salvesen, G. S. (1999). Caspase-9 can be activated without proteolytic processing. J. Biol. Chem., 274, 8359–62CrossRefGoogle ScholarPubMed
Tinhofer, I., Maly, K., Dietl, P.et al. (1996). Differential Ca2+ signaling induced by activation of the epidermal growth factor and nerve growth factor receptors. J. Biol. Chem., 271, 30505–9CrossRefGoogle ScholarPubMed
Traverse, S., Gomez, N., Paterson, H., Marshall, C. & Cohen, P. (1992). Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem. J., 288 (2), 351–5CrossRefGoogle ScholarPubMed
Zee, C. E., Ross, G. M., Riopelle, R. J., and Hagg, T. (1996). Survival of cholinergic forebrain neurons in developing p75NGFR- deficient mice [see comments] [retracted by Hagg T. In: Science 1999 Jul 16;285(5426):340].Science, 274, 1729–32Google Scholar
van der Zee, C. E. E. M., Ross, G. M., Riopelle, R. J. & Hagg, T. (1998). Survival of cholinergic forebrain neurons in developing p75 NGFR-deficient mice. Science, 1729–32
Wakade, A. R., Edgar, D. & Thoenen, H (1983). Both nerve growth factor and high K concentration support the survival of chick embryo sympathetic neurons. Exp. Cell Res., 144, 377–84CrossRefGoogle Scholar
Wang, H.-G., Miyashita, T., Takayama, S.et al. (1994). Apoptosis regulation by interaction of Bcl-2 protein and Raf-1 kinase. Oncogene, 9, 2751–6Google ScholarPubMed
Wang, H.-G., Rapp, U. R. & Reed, J. C. (1996). Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell, 87, 629–38CrossRefGoogle Scholar
Weidner, K. M., Arakaki, N., Hartmann, G.et al. (1991). Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc. Natl Acad. Sci. USA, 88, 7001–5CrossRefGoogle ScholarPubMed
Wiese, S., Digby, M. R., Gunnersen, J. M.et al. (1999a). The anti-apoptotic protein ITA is essential for NGF-mediated survival of embryonic chick neurons. Nat. Neurosci., 2, 978–83CrossRefGoogle Scholar
Wiese, S., Metzger, F., Holtmann, B. & Sendtner, M. (1999b). The role of p75NTR in modulating neurotrophin survival effects in developing motoneurons. Eur. J. Neurosci., 11, 1668–76CrossRefGoogle Scholar
Wiese, S., Pei, G., Karch, C.et al. (2001). Specific function of B-Raf in mediating survival of embryonic motoneurons and sensory neurons. Nat. Neurosci., 4, 137–42CrossRefGoogle ScholarPubMed
Wixler, V., Smola, U., Schuler, M. & Rapp, U. (1996). Differential regulation of Raf isozymes by growth versus differentiation inducing factors in PC12 pheochromocytoma cells. FEBS Lett., 385, 131–7CrossRefGoogle ScholarPubMed
Wolf, D. E., McKinnon, C. A., Daou, M. C., Stephens, R. M., Kaplan, D. R. & Ross, A. H. (1995). Interaction with TrkA immobilizes gp75 in the high affinity nerve growth factor receptor complex. J. Biol. Chem., 270, 2133–8CrossRefGoogle ScholarPubMed
Wong, V., Glass, D. J., Arriga, R., Yancopoulos, G. D., Lindsay, R. M. & Conn, G. (1997). Hepatocyte growth factor promotes motor neuron survival and synergizes with ciliary neurotrophic factor. J. Biol. Chem., 272, 5187–91CrossRefGoogle ScholarPubMed
Yaginuma, H., Tomita, M., Takashita, N.et al. (1996). A novel type of programmed neuronal death in the cervical spinal cord of the chick embryo. J. Neurosci., 16, 3685–703CrossRefGoogle ScholarPubMed
Yamamoto, Y., Livet, J., Polock, R.et al. (1997). Hepatocyte growth factor (HGF/SF) is a muscle-derived survival factor for a subpopulation of embryonic motoneurons. Development (Suppl), 124, 2903–13Google ScholarPubMed
Yeo, T. T., Chua-Couzens, J., Butcher, L. L.et al. (1997). Absence of p75NTR causes increased basal forebrain cholinergic neuron size, choline acetyltransferase activity, and target innervation. J. Neurosci., 17, 7594–605CrossRefGoogle ScholarPubMed
York, R. D., Yao, H., Dillon, T.et al. (1998). Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature, 392, 622–6CrossRefGoogle ScholarPubMed
Zurn, A. D., Baetge, E. E., Hammang, J. P., Tan, S. A. & Aebischer, P. (1994). Glial cell line-derived neurotrophic factor (GDNF), a new neurotrophic factor for motoneurones. NeuroReport, 6, 113–18CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×