Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-29T03:09:50.974Z Has data issue: false hasContentIssue false

9 - Protein misfolding and cellular defense mechanisms in neurodegenerative diseases

from Part I - Basic aspects of neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Michael Y. Sherman
Affiliation:
Department of Biochemistry, Boston University Medical School, MA, USA
Alfred L. Goldberg
Affiliation:
Department of Cell Biology, Harvard Medical School, Boston, MA, USA
Get access

Summary

Introduction

In many major neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and several hereditary diseases caused by expansions of polyglutamine (PolyQ) tracts (e.g. Huntington's disease and the spinocerebellar ataxias) (Table 9.1), the pathology and the eventual death of specific neuronal populations occur due to the accumulation of specific abnormal polypeptides, which form insoluble intracellular inclusions. Many observations suggest that these various types of inclusions arise through common mechanisms and elicit similar host responses. For example, all these inclusions contain components of the ubiquitin-proteasome degradation pathway and also molecular chaperones, which represent the two main systems that eukaryotic cells use to protect themselves against the buildup of unfolded polypeptides. The accumulation of abnormal polypeptides in the form of inclusions in various neurological disorders must result from an inability of neurons to either refold or degrade these abnormal species. Because these neurological diseases are of late onset, and the very same mutant proteins are expressed without causing obvious pathology in younger individuals, it seems likely that the failure to adequately deal with these abnormal molecules progresses with aging.

Because the continued accumulation of unfolded, non-functional polypeptides is likely to cause cell toxicity, it is not surprising that defense mechanisms emerged early in evolution that enable cells to withstand the appearance of large amounts of unfolded proteins, as may result from mutations, errors in protein synthesis, or inefficient folding of nascent polypeptides.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 108 - 130
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amrani, M., Allen, N. J., O'Shea, J.et al. (1993). Role of catalase and heat shock protein on recovery of cardiac endothelial and mechanical function after ischemia. Cardioscience, 4, 193–8Google ScholarPubMed
Ananthan, J., Goldberg, A. L. & Voellmy, R. (1986). Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science, 232, 522–4CrossRefGoogle ScholarPubMed
Anglade, P., Vyas, S., Javoy-Agid, F.et al. (1997). Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol., 12, 25–31Google ScholarPubMed
Anton, L. C., Schubert, U., Bacik, I.et al. (1999). Intracellular localization of proteasomal degradation of a viral antigen. J. Cell Biol., 146, 113–24CrossRefGoogle ScholarPubMed
Aronin, N., Chase, K., Young, C.et al. (1995). Cag expansion affects the expression of mutant huntingtin in the huntington's disease brain. Neuron, 15, 1193–201CrossRefGoogle ScholarPubMed
Baba, M., Nakajo, S., Tu, P. H.et al. (1998). Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am. J. Pathol., 152, 879–84Google ScholarPubMed
Baler, R., Zou, J. & Voellmy, R. (1996). Evidence for a role of Hsp70 in the regulation of the heat shock response in mammalian cells. Cell Stress Chaperones, 1, 33–92.3.CO;2>CrossRefGoogle ScholarPubMed
Bardag-Gorce, F., Leeuwen, F. W., Nguyen, V.et al. (2002). The role of the ubiquitin-proteasome pathway in the formation of mallory bodies. Exp. Mol. Pathol., 73, 75–83CrossRefGoogle ScholarPubMed
Bates, G. P., Mangiarini, L. & Davies, S. W. (1998). Transgenic mice in the study of polyglutamine repeat expansion diseases. Brain Pathol., 8, 699–714CrossRefGoogle Scholar
Benaroudj, N. & Goldberg, A. L. (2000). PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat. Cell Biol., 2, 833–9CrossRefGoogle ScholarPubMed
Bence, N. F., Sampat, R. M. & Kopito, R. R. (2001). Impairment of the ubiquitin-proteasome system by protein aggregation. Science, 292, 1552–5CrossRefGoogle ScholarPubMed
Bennett, M. C., Bishop, J. F., Leng, Y., Chock, P. B., Chase, T. N. & Mouradian, M. M. (1999). Degradation of alpha-synuclein by proteasome. J. Biol. Chem., 274, 33855–8CrossRefGoogle ScholarPubMed
Bercovich, B., Stancovski, I. & Mayer, A. (1997). Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J. Biol. Chem., 272, 9002–10CrossRefGoogle ScholarPubMed
Braun, B. C., Glickman, M., Kraft, R.et al. (1999). The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat. Cell Biol., 1, 221–6CrossRefGoogle ScholarPubMed
Brown, R. (1998). Amyotrophic Lateral Sclerosis and the Inherited Motor Neuron Diseases. New York: Scientific American, Inc.
Bruening, W., Roy, J., Giasson, B., Figlewicz, D. A., Mushynski, W. E. & Durham, H. D. (1999). Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J. Neurochem., 72, 693–9CrossRefGoogle ScholarPubMed
Carmichael, J., Chatellier, J., Woolfson, A., Milstein, C., Fersht, A. R. & Rubinsztein, D. C. (2000). Bacterial and yeast chaperones reduce both aggregate formation and cell death in mammalian cell models of Huntington's disease. Proc. Natl Acad. Sci., USA, 97, 9701–5CrossRefGoogle ScholarPubMed
Carrard, G., Bulteau, A. L., Petropoulos, I. & Friguet, B. (2002). Impairment of proteasome structure and function in aging. Int. J. Biochem. Cell Biol., 34, 1461–74CrossRefGoogle Scholar
Cepeda, C., Ariano, M. A., Calvert, C. R.et al. (2001). NMDA receptor function in mouse models of Huntington disease. J. Neurosci. Res., 66, 525–39CrossRefGoogle ScholarPubMed
Chai, Y., Koppenhafer, S. L., Bonini, N. M. & Paulson, H. L. (1999a). Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J. Neurosci., 19, 10338–47CrossRefGoogle Scholar
Chai, Y. H., Koppenhafer, S. L., Shoesmith, S. J., Perez, M. K. & Paulson, H. L. (1999b). Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum. Mol. Genet., 8, 673–82CrossRefGoogle Scholar
Chan, H. Y., Warrick, J. M., Gray-Board, G. L., Paulson, H. L. & Bonini, N. M. (2000). Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum. Mol. Genet., 9, 2811–20CrossRefGoogle ScholarPubMed
Chan, P. H. (1996). Role of oxidants in ischemic brain damage. Stroke, 27, 1124–9CrossRefGoogle ScholarPubMed
Chapman, R., Sidrauski, C. & Walter, P. (1998). Intracellular signaling from the endoplasmic reticulum to the nucleus. Ann. Rev. Cell Dev. Biol., 14, 459–85CrossRefGoogle ScholarPubMed
Chiu, D. T. Y. & Liu, T. Z. (1997). Free radical and oxidative damage in human blood cells. J. Biomedi. Sci., 4, 256–9CrossRefGoogle ScholarPubMed
Chow, S. C., Peters, I. & Orrenius, S. (1995). Reevaluation of the role of de novo protein synthesis in rat thymocyte apoptosis. Exp. Cell Res., 216, 149–59CrossRefGoogle ScholarPubMed
Chung, K. K., Dawson, V. L. & Dawson, T. M. (2001a). The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. Trends Neurosci., 24, S7–S14CrossRefGoogle Scholar
Chung, K. K., Zhang, Y., Lim, K. L.et al. (2001b). Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med., 7, 1144–50CrossRefGoogle Scholar
Cleveland, D. W. (1999). From Charcot to SOD1: mechanisms of selective motor neuron death in ALS. Neuron, 24, 515–20CrossRefGoogle ScholarPubMed
Cleveland, D. W. & Rothstein, J. D. (2001). From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci., 2, 806–19CrossRefGoogle ScholarPubMed
Cooper, A. J., Sheu, K. F., Burke, J. R.et al. (1997). Polyglutamine domains are substrates of tissue transglutaminase: does transglutaminase play a role in expanded CAG/poly-Q neurodegenerative diseases?J. Neurochem., 69, 431–4CrossRefGoogle ScholarPubMed
Cotner, T. & Pious, D. (1995). HLA-DR beta chains enter into an aggregated complex containing GRP-78/BiP prior to their degradation by the pre-Golgi degradative pathway. J. Biol. Chem., 270, 2379–86CrossRefGoogle ScholarPubMed
Coux, O., Tanaka, K. & Goldberg, A. L. (1996). Structure and functions of the 20S and 26S proteasomes. Ann. Rev. Biochem., 65, 801–47CrossRefGoogle ScholarPubMed
Cuervo, A. M. & Dice, J. F. (1996). A receptor for the selective uptake and degradation of proteins by lysosomes. Science, 273, 501–3CrossRefGoogle ScholarPubMed
Cuervo, A. M. & Dice, J. F. (1998a). How do intracellular proteolytic systems change with age?Frontiers Biosci., 3, 25–43Google Scholar
Cuervo, A. M. & Dice, J. F. (1998b). Lysosomes, a meeting point of proteins, chaperones, and proteases. J. Mol. Med., 76, 6–12CrossRefGoogle Scholar
Cummings, C. J., Mancini, M. A., Antalffy, B.DeFranco, D. B., Orr, H. T. & Zoghbi, H. Y. (1998). Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet., 19, 148–54CrossRefGoogle ScholarPubMed
Cummings, C. J., Reinstein, E., Sun, Y.et al. (1999). Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron, 24, 879–92CrossRefGoogle ScholarPubMed
Cummings, C. J., Sun, Y., Opal, P.et al. (2001). Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum. Mol. Genet., 10, 1511–18CrossRefGoogle ScholarPubMed
da Costa, C. A., Ancolio, K. & Checler, F. (1999). C-terminal maturation fragments of presenilin 1 and 2 control secretion of APP alpha and A beta by human cells and are degraded by proteasome. Mol. Med., 5, 160–8Google Scholar
Davies, S. W., Turmaine, M., Cozens, B. A.et al. (1997). Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the Hd mutation. Cell, 90, 537–48CrossRefGoogle ScholarPubMed
Vrij, F. M., Sluijs, J. A., Gregori, L.et al. (2001). Mutant ubiquitin expressed in Alzheimer's disease causes neuronal death. FASEB J., 15, 2680–8CrossRefGoogle ScholarPubMed
Diamond, M. I., Robinson, M. R. & Yamamoto, K. R. (2000). Regulation of expanded polyglutamine protein aggregation and nuclear localization by the glucocorticoid receptor. Proc. Natl Acad. Sci. USA, 97, 657–61CrossRefGoogle ScholarPubMed
Dice, J. F. (1993). Cellular and molecular mechanisms of aging. Physiol. Rev., 73, 149–59CrossRefGoogle ScholarPubMed
Dubois, M. F., Hovanessian, A. G. & Bensaude, O. (1991). Heat-shock-induced denaturation of proteins. Characterization of the insolubilization of the interferon-induced p68 kinase. J. Biol. Chem., 266, 9707–11Google ScholarPubMed
Ellerby, L. M., Andrusiak, R. L., Wellington, C. L.et al. (1999). Cleavage of atrophin-1 at caspase site aspartic acid 109 modulates cytotoxicity. J. Biol. Chem., 274, 8730–6CrossRefGoogle ScholarPubMed
Faber, P. W., Alter, J. R., MacDonald, M. E. & Hart, A. C. (1999). Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc. Natl Acad. Sci. USA, 96, 179–84CrossRefGoogle ScholarPubMed
Fabunmi, R. P., Wigley, W. C., Thomas, P. J. & DeMartino, G. N. (2000). Activity and regulation of the centrosome-associated proteasome. J. Biol. Chem., 275, 409–13CrossRefGoogle ScholarPubMed
Faris, M., Kokot, N., Latinis, K.et al. (1998a). The c-jun N-terminal kinase cascade plays a role in stress-induced apoptosis in Jurkat cells by up-regulating fas ligand expression. J. Immunol., 160, 134–44Google Scholar
Faris, M., Latinis, K. M., Kempiak, S. J., Koretzky, G. A. & Nel, A. (1998b). Stress-induced fas ligand expression in T cells is mediated through a mek kinase 1-regulated response element in the fas ligand promoter. Mol. Cell. Biol., 18, 5414–24CrossRefGoogle Scholar
Feder, M. E. & Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann. Rev. Physiol., 61, 243–82CrossRefGoogle ScholarPubMed
Feldman, D. E. & Frydman, J. (2000). Protein folding in vivo: the importance of molecular chaperones. Curr. Opin. Struct. Biol., 10, 26–33CrossRefGoogle ScholarPubMed
Fernandez-Funez, P., Nino-Rosales, M. L., Gouyon, B.et al. (2000). Identification of genes that modify ataxin-1-induced neurodegeneration. Nature, 408, 101–6Google ScholarPubMed
Fewell, S. W., Travers, K. J., Weissman, J. S. & Brodsky, J. L. (2001). The action of molecular chaperones in the early secretory pathway. Annu. Rev. Genet., 35, 149–91CrossRefGoogle ScholarPubMed
Finley, D., Ozkaynak, E. & Varshavsky, A. (1987). The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell, 48, 1035–46CrossRefGoogle ScholarPubMed
Friedlander, R. M. & Yuan, J. Y. (1998). ICE, neuronal apoptosis and neurodegeneration. Cell Death Differ., 5, 823–31CrossRefGoogle ScholarPubMed
Frydman, J. (2001). Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem., 70, 603–47CrossRefGoogle ScholarPubMed
Gabai, V. L., Meriin, A. B., Mosser, D. D., Caron, A. W., Rits, S. Shifrin, V. I. & Sherman, M. Y. (1997). HSP70 prevent activation of stress kinases: a novel pathway of cellular thermotolerance, 272, 18033–7
Gabai, V. L., Meriin, A. B., Yaglom, J. A., Volloch, V. Z. & Sherman, M. Y. (1998). Role of Hsp70 in regulation of stress-kinase JNK: implication in apoptosis and aging. FEBS Lett., 438, 1–4CrossRefGoogle Scholar
Gabai, V. L., Yaglom, J. A., Volloch, V.et al. (2000). Hsp72-mediated suppression of c-Jun N-terminal kinase is implicated in development of tolerance to caspase-independent cell death. Mol. Cell. Biol., 20, 6826–36CrossRefGoogle ScholarPubMed
Gabai, V. L., Mabuchi, K., Mosser, D. D. & Sherman, M. Y. (2002). Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol. Cell. Biol., 22, 3415–24CrossRefGoogle ScholarPubMed
Gabbita, S. P., Aksenov, M. Y., Lovell, M. A. & Markesbery, W. R. (1999). Decrease in peptide methionine sulfoxide reductase in Alzheimer's disease brain. J. Neurochem., 73, 1660–6CrossRefGoogle ScholarPubMed
Garcia-Mata, R., Bebok, Z., Sorscher, E. J. & Sztul, E. S. (1999). Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J. Cell. Biol., 146, 1239–54CrossRefGoogle ScholarPubMed
Gervais, F. G., Singaraja, R., Xanthoudakis, S.et al. (2002). Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat. Cell. Biol., 4, 95–105CrossRefGoogle Scholar
Giasson, B. I., Duda, J. I., Murray, I. V.et al. (2000). Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in syncleinopathy lesions. Science, 290, 285–9CrossRefGoogle Scholar
Glickman, M. H. & Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev., 82, 373–428CrossRefGoogle ScholarPubMed
Goff, S. A. & Goldberg, A. L. (1985). Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell, 41, 587–95CrossRefGoogle Scholar
Gragerov, A. I., Martin, E. S., Krupenko, M. A., Kashlev, M. V. & Nikiforov, V. G. (1991). Protein aggregation and inclusion body formation in Escherichia coli rpoH mutant defective in heat shock protein induction. FEBS Lett., 291, 222–4CrossRefGoogle ScholarPubMed
Grune, T., Reinheckel, T. & Davies, K. J. (1997). Degradation of oxidized proteins in mammalian cells. FASEB J., 11, 526–34CrossRefGoogle ScholarPubMed
Hass, M. A. & Massaro, D. (1988). Regulation of the synthesis of superoxide dismutases in rat lungs during oxidant and hyperthermic stresses. J. Biol. Chem., 263, 776–81Google ScholarPubMed
Hayes, S. A. & Dice, J. F. (1996). Roles of molecular chaperones in protein degradation. J. Cell Biol., 132, 255–8CrossRefGoogle ScholarPubMed
Hegde, A. N., Inokuchi, K., Pei, W.et al. (1997). Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell, 89, 115–26CrossRefGoogle ScholarPubMed
Helmuth, L. (2001). Cell biology. Protein clumps hijack cell's clearance system. Science, 292, 1467–8CrossRefGoogle ScholarPubMed
Hershko, A. & Ciechanover, A. (1998). The ubiquitin system. Ann. Rev. Biochem., 67, 425–79CrossRefGoogle ScholarPubMed
Heydari, A. R., Takahashi, R., Gutsmann, A., You, S. & Richardson, A. (1994). Hsp70 and aging. Experientia, 50, 1092–8CrossRefGoogle ScholarPubMed
Heydari, A. R., You, S., Takahashi, R., Gutsmann-Conrad, A., Sarge, K. D. & Richardson, A. (2000). Age-related alterations in the activation of heat shock transcription factor 1 in rat hepatocytes. Exp. Cell Res., 256, 83–93CrossRefGoogle ScholarPubMed
Hideshima, T., Mitsiades, C., Akiyama, M.et al. (2002). Molecular mechanisms mediating anti-myeloma activity of proteasome inhibitor PS-341. Blood, 26, 26Google Scholar
Hoffner, G., Kahlem, P. & Djian, P. (2002). Perinuclear localization of huntingtin as a consequence of its binding to microtubules through an interaction with beta-tubulin: relevance to Huntington's disease. J. Cell. Sci., 115, 941–8Google ScholarPubMed
Honda, T., Yasutake, K., Nihonmatsu, N.et al. (1999). Dual roles of proteasome in the metabolism of presenilin 1. J. Neurochem., 72, 255–61CrossRefGoogle Scholar
Igarashi, S., Koide, R., Shimohata, T.et al. (1998). Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat. Genet., 18, 111–17CrossRefGoogle ScholarPubMed
Ii, K., Ito, H., Tanaka, K. & Hirano, A. (1997). Immunocytochemical co-localization of the proteasome in ubiquitinated structures in neurodegenerative diseases and the elderly. J. Neuropath. Exp. Neurol., 56, 125–31CrossRefGoogle ScholarPubMed
Imai, Y., Soda, M., Hatakeyama, S.et al. (2002). CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol. Cel., 10, 55–67CrossRefGoogle ScholarPubMed
Imaizumi, K., Katayama, T. & Tohyama, M. (2001). Presenilin and the UPR. Nat. Cell. Biol., 3, E104CrossRefGoogle ScholarPubMed
Jana, N. R., Tanaka, M., Wang, G. & Nukina, N. (2000). Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum. Mol. Genet., 9, 2009–18CrossRefGoogle ScholarPubMed
Jana, N. R., Zemskov, E. A., Wang, G. & Nukina, N. (2001). Altered proteasomal function due to the expression of polyglutamine- expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum. Mol. Genet., 10, 1049–59CrossRefGoogle ScholarPubMed
Johnson, J. L. & Craig, E. A. (1997). Protein folding in vivo: unraveling complex pathways. Cell, 90, 201–4CrossRefGoogle ScholarPubMed
Johnston, J. A., Ward, C. L. & Kopito, R. R. (1998). Aggresomes: a cellular response to misfolded proteins. J. Cell Biol., 143, 1883–98CrossRefGoogle ScholarPubMed
Johnston, J. A., Dalton, M. J., Gurney, M. E. & Kopito, R. R. (2000). Formation of high molecular weight complexes of mutant cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA, 97, 12571–6CrossRefGoogle Scholar
Johnston, J. A., Illing, M. E. & Kopito, R. R. (2002). Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil. Cytoskeleto., 53, 26–38CrossRefGoogle ScholarPubMed
Kahlem, P., Green, H. & Djian, P. (1998). Transglutaminase as the agent of neurodegenerative diseases due to polyglutamine expansion. Pathol. Biol., 46, 681–2Google ScholarPubMed
Kalchman, M. A., Koide, H. B., McCutcheon, K.et al. (1997). HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat. Genet., 16, 44–53CrossRefGoogle Scholar
Kampinga, H. H., Brunsting, J. F., Stege, G. J., Burgman, P. W. & Konings, A. W. (1995). Thermal protein denaturation and protein aggregation in cells made thermotolerant by various chemicals: role of heat shock proteins. Exp. Cell Res., 219, 536–46CrossRefGoogle ScholarPubMed
Katayama, T., Imaizumi, K., Sato, N.et al. (1999). Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat. Cell Biol., 1, 479–85CrossRefGoogle ScholarPubMed
Katayama, T., Imaizumi, K., Honda, A.et al. (2001). Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked presenilin-1 mutations. J. Biol. Chem., 276, 43446–54CrossRefGoogle ScholarPubMed
Kawashima, T., Kikuchi, H., Takita, M.et al. (1998). Skein-like inclusions in the neostriatum from a case of amyotrophic lateral sclerosis with dementia. Acta Neuropath., 96, 541–5CrossRefGoogle ScholarPubMed
Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D. & Housman, D. (1999). Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl Acad. Sci. USA, 96, 11404–9CrossRefGoogle ScholarPubMed
Kazemi-Esfarjani, P. & Benzer, S. (2000). Genetic suppression of polyglutamine toxicity in Drosophila. Science, 287, 1837–40CrossRefGoogle ScholarPubMed
Kegel, K. B., Kim, M., Sapp, E.et al. (2000). Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J. Neurosci., 20, 7268–78CrossRefGoogle ScholarPubMed
Kharbanda, S., Saxena, S., Yoshida, K.et al. (2000). Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J. Biol. Chem., 275, 322–7CrossRefGoogle ScholarPubMed
Kisselev, A. F., Akopian, T. N., Castillo, V. & Goldberg, A. L. (1999a). Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Mol. Cel., 4, 395–402CrossRefGoogle Scholar
Kisselev, A. F., Akopian, T. N., Woo, K. M. & Goldberg, A. L. (1999b). The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem., 274, 3363–71CrossRefGoogle Scholar
Kitada, T., Asakawa, S., Hattori, N.et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism [see comments]. Nature, 392, 605–8CrossRefGoogle Scholar
Klement, I. A., Skinner, P. J., Kaytor, M. D.et al. (1998). Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice [see comments]. Cell, 95, 41–53CrossRefGoogle Scholar
Klemes, Y., Etlinger, J. D. & Goldberg, A. L. (1981). Properties of abnormal proteins degraded rapidly in reticulocytes. Intracellular aggregation of the globin molecules prior to hydrolysis. J. Biol. Chem., 256, 8436–44Google ScholarPubMed
Kobayashi, Y., Miwa, S., Merry, D. E.et al. (1998). Caspase-3 cleaves the expanded androgen receptor protein of spinal and bulbar muscular atrophy in a polyglutamine repeat length-dependent manner. Biochem. Biophys. Res. Commun., 252, 145–50CrossRefGoogle Scholar
Kobayashi, Y., Kume, A., Li, M.et al. (2000). Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J. Biol. Chem., 275, 8772–8CrossRefGoogle ScholarPubMed
Kopito, R. R. (1999). Biosynthesis and degradation of CFTR. Physiol. Rev., 79, S167–73CrossRefGoogle ScholarPubMed
Kuan, C. Y., Yang, D. D., Roy, D. R. S., Davis, R. J., Rakic, P. & Flavell, R. A. (1999). The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron, 22, 667–76CrossRefGoogle ScholarPubMed
Kuschel, L., Hansel, A., Schoherr, R.et al. (1999). Molecular cloning and functional expression of a human peptide methionine sulfoxide reductase (hMsrA). FEBS Lett., 456, 17–21CrossRefGoogle Scholar
Lathrop, R. H., Casale, M., Tobias, D. J., Marsh, J. L. & Thompson, L. M. (1998). Modeling protein homopolymeric repeats: possible polyglutamine structural motifs for Huntington's disease. Proc. Int. Conf. Intell. Syst. Mol. Biol., 6, 105–14Google ScholarPubMed
Lee, D. H., Sherman, M. Y. & Goldberg, A. L. (1996a). Involvement of the molecular chaperone Ydj1 in the ubiquitin-dependent degradation of short-lived and abnormal proteins in Saccharomyces cerevisiae. Mol. Cell. Biol., 16, 4773–81CrossRefGoogle Scholar
Lee, H. J., Shin, S. Y., Choi, C., Lee, Y. H. & Lee, S. J. (2002). Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J. Biol. Chem., 277, 5411–17CrossRefGoogle ScholarPubMed
Lee, Y. K., Manalo, D. & Liu, A. Y. (1996b). Heat shock response, heat shock transcription factor and cell aging. Biol. Signal., 5, 180–91CrossRefGoogle Scholar
Leroy, E., Boyer, R., Auburger, G.et al. (1998). The ubiquitin pathway in Parkinson's disease [letter]. Nature, 395, 451–2CrossRefGoogle Scholar
Li, M. W., Ona, V. O., Guegan, C.et al. (2000). Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science, 288, 335–9CrossRefGoogle Scholar
Liberek, K., Galitski, T. P., Zylicz, M. & Georgopoulos, C. (1992). The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor. Proc. Natl Acad. Sci., USA, 89, 3516–20CrossRefGoogle ScholarPubMed
Lindsten, K., Vrij, F. M., Verhoef, L. G.et al. (2002). Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J. Cell Biol., 157, 417–27CrossRefGoogle ScholarPubMed
Liu, Y., Fallon, L., Lashuel, H. A., Liu, Z. & Lansbury, P. T. Jr. (2002). The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell, 111, 209–18CrossRefGoogle ScholarPubMed
Liu, Y. F. (1998). Expression of polyglutamine-expanded Huntingtin activates the SEK1-JNK pathway and induces apoptosis in a hippocampal neuronal cell line. J. Biol. Chem., 273, 28873–7CrossRefGoogle Scholar
Locke, M. & Tanguay, R. M. (1996). Diminished heat shock response in the aged myocardium. Cell Stress Chaperones, 1, 251–602.3.CO;2>CrossRefGoogle ScholarPubMed
Ma, J., Wollmann, R. & Lindquist, S. (2002). Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science, 298, 1781–5CrossRefGoogle ScholarPubMed
Martin-Aparicio, E., Yamamoto, A., Hernandez, F., Hen, R., Avila, J. & Lucas, J. J. (2001). Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington's disease. J. Neurosci., 21, 8772–81CrossRefGoogle Scholar
Martindale, D., Hackam, A., Wieczorek, A.et al. (1998). Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat. Genet., 18, 150–4CrossRefGoogle ScholarPubMed
Masaki, R., Saito, T., Yamada, K. & Ohtani-Kaneko, R. (2000). Accumulation of phosphorylated neurofilaments and increase in apoptosis-specific protein and phosphorylated c-Jun induced by proteasome inhibitors. J. Neurosci. Res., 62, 75–833.0.CO;2-V>CrossRefGoogle ScholarPubMed
Masliah, E., Rockenstein, E., Veinbergs, I.et al. (2000). Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science, 287, 1265–9CrossRefGoogle ScholarPubMed
Massa, S. M., Swanson, R. A. & Sharp, F. R. (1996). The stress gene response in brain. Cerebrovasc. Brain Metab. Rev., 8, 95–158Google ScholarPubMed
Mayer, R. J., Tipler, C., Arnold, J.et al. (1996). Endosome-lysosomes, ubiquitin and neurodegeneration. Adv. Exp. Medi. Biol., 389, 261–9CrossRefGoogle ScholarPubMed
McNaught, K. S. & Jenner, P. (2001). Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neurosci. Lett., 297, 191–4CrossRefGoogle ScholarPubMed
McNaught, K. S., Olanow, C. W., Halliwell, B., Isacson, O. & Jenner, P. (2001). Failure of the ubiquitin-proteasome system in Parkinson's disease. Nat. Rev. Neurosci., 2, 589–94CrossRefGoogle ScholarPubMed
McNaught, K. S., Mytilineou, C., Jnobaptiste, R.et al. (2002). Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J. Neurochem., 81, 301–6CrossRefGoogle ScholarPubMed
Meacham, G. C., Patterson, C., Zhang, W., Younger, J. M. & Cyr, D. M. (2001). The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol., 3, 100–5CrossRefGoogle ScholarPubMed
Meriin, A., Gabai, V., Yaglom, J., Shifrin, V. & Sherman, M. (1998). Proteasome inhibitors activate stress-kinases and induce Hsp72: diverse effects on apoptosis. J. Biol. Chem., 273, 6373–9CrossRefGoogle ScholarPubMed
Meriin, A. B., Mabuchi, K., Gabai, V. L., Yaglom, J. A., Kazantsev, A. & Sherman, M. Y. (2001). Intracellular aggregation of polypeptides with expanded polyglutamine domain is stimulated by stress-activated kinase MEKK1. J. Cell Biol., 153, 851–64CrossRefGoogle ScholarPubMed
Meriin, A. B., Zhang, X., He, X., Newnam, G. P., Chernoff, Y. O. & Sherman, M. Y. (2002). Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J. Cell Biol., 157, 997–1004CrossRefGoogle ScholarPubMed
Mezey, E., Dehejia, A., Harta, G., Papp, M. I., Polymeropoulos, M. H. & Brownstein, M. J. (1998). Alpha synuclein in neurodegenerative disorders – murderer or accomplice. Nat. Med., 4, 755–7CrossRefGoogle ScholarPubMed
Mitch, W. E. & Goldberg, A. L. (1996). Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N. Engl. J. Med., 335, 1897–905CrossRefGoogle ScholarPubMed
Miyashita, T., Matsui, J., Ohtsuka, Y.et al. (1999). Expression of extended polyglutamine sequentially activates initiator and effector caspases. Biochem. Biophys. Res. Commun., 257, 724–30CrossRefGoogle ScholarPubMed
Mizuno, Y., Hattori, N., Mori, H., Suzuki, T. & Tanaka, K. (2001). Parkin and Parkinson's disease. Curr. Opin. Neurol., 14, 477–82CrossRefGoogle ScholarPubMed
Morley, J. F., Brignull, H. R., Weyers, J. J. & Morimoto, R. I. (2002). The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA, 99, 10417–22CrossRefGoogle ScholarPubMed
Moskovitz, J., Flescher, E., Berlett, B. S., Azare, J., Poston, J. M. & Stadtman, E. R. (1998). Overexpression of peptide-methionine sulfoxide reductase in saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proc. Natl Acad. Sci. USA, 95, 14071–5CrossRefGoogle Scholar
Moskovitz, J., Jenkins, N. A., Gilbert, D. J.et al. (1996). Chromosomal localization of the mammalian peptide-methionine sulfoxide reductase gene and its differential expression in various tissues. Proc. Natl Acad. Sci. USA, 93, 3205–8CrossRefGoogle ScholarPubMed
Mosser, D. D. & Martin, L. H. (1992). Induced thermotolerance to apoptosis in a human T lymphocyte cell line. J. Cell. Physiol., 151, 561–70CrossRefGoogle Scholar
Mosser, D. D., Caron, A. W., Bourget, L., Denis-Larose, C. & Massie, B. (1997). Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell. Biol., 17, 5317–27CrossRefGoogle ScholarPubMed
Mrak, R. E., Griffin, W. S. T. & Graham, D. I. (1997). Aging-associated changes in human brain. J. Neuropath. Exp. Neurol., 56, 1269–75CrossRefGoogle ScholarPubMed
Muchowski, P. J., Schaffar, G., Sittler, A.Wanker, E. E., Hayer-Hartl, M. K. & Hartl, F. U. (2000). Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl Acad. Sci. USA, 97, 7841–6CrossRefGoogle ScholarPubMed
Muchowski, P. J., Ning, K., D'Souza-Schorey, C. & Fields, S. (2002). Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Proc. Natl Acad. Sci. USA, 99, 727–32CrossRefGoogle ScholarPubMed
Muramatsu, T., Hatoko, M., Tada, H., Shirai, T. & Ohnishi, T. (1996). Age-related decrease in the inductability of heat shock protein 72 in normal human skin. Br. J. Dermatol., 134, 1035–8CrossRefGoogle ScholarPubMed
Murata, S., Minami, Y., Minami, M., Chiba, T. & Tanaka, K. (2001). CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep, 2, 1133–8CrossRefGoogle ScholarPubMed
Navon, A. & Goldberg, A. L. (2001). Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol. Cel., 8, 1339–49CrossRefGoogle ScholarPubMed
Nucifora, F. C. Jr., Sasaki, M., Peters, M. F.et al. (2001). Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science, 291, 2423–8CrossRefGoogle ScholarPubMed
Ohba, M. (1997). Modulation of intracellular protein degradation by SSB1-SIS1 chaperon system in yeast S. cerevisiae. FEBS Lett., 409, 307–11CrossRefGoogle ScholarPubMed
Ona, V. O., Li, M., Vonsattel, J. P.et al. (1999). Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease [see comments]. Nature, 399, 263–7CrossRefGoogle Scholar
Paxinou, E., Chen, Q., Weisse, M.et al. (2001). Induction of alpha-synuclein aggregation by intracellular nitrative insult. J. Neurosci., 21, 8053–61CrossRefGoogle ScholarPubMed
Peters, P. J., Ning, K., Palacios, F.et al. (2002). Arfaptin 2 regulates the aggregation of mutant huntingtin protein. Nat. Cell Biol., 4, 240–5CrossRefGoogle ScholarPubMed
Petersen, A., Larsen, K. E., Behr, G. G.et al. (2001). Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum. Mol. Genet., 10, 1243–54CrossRefGoogle ScholarPubMed
Polymeropoulos, M. H., Lavedan, C., Leroy, E.et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson's disease [see comments]. Science, 276, 2045–7CrossRefGoogle Scholar
Preisinger, E., Jordan, B. M., Kazantsev, A. & Housman, D. (1999). Evidence for a recruitment and sequestration mechanism in Huntington's disease. Phil. Trans. Roy. Soc. Lond. B. Biol. Sci., 354, 1029–34CrossRefGoogle ScholarPubMed
Prouty, W. F., Karnovsky, M. J. & Goldberg, A. L. (1975). Degradation of abnormal proteins in Escherichia coli. Formation of protein inclusions in cells exposed to amino acid analogs. J. Biol. Chem., 250, 1112–22Google ScholarPubMed
Rattan, S. I. & Derventzi, A. (1991). Altered cellular responsiveness during ageing. Bioessays, 13, 601–6CrossRefGoogle ScholarPubMed
Ravikumar, B., Duden, R. & Rubinsztein, D. C. (2002). Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet., 11, 1107–17CrossRefGoogle ScholarPubMed
Rock, K. L., Gramm, C., Rothstein, L.et al. (1994). Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell, 78, 761–71CrossRefGoogle ScholarPubMed
Saigoh, K., Wang, Y. L., Suh, T. G.et al. (1999). Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet., 23, 47–51CrossRefGoogle ScholarPubMed
Samali, A. & Orrenius, S. (1998). Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaperones, 3, 228–362.3.CO;2>CrossRefGoogle ScholarPubMed
Sanchez, I., Xu, C. J., Juo, P., Kakizaka, A., Blenis, J. & Yuan, J. (1999). Caspase-8 is required for cell death induced by expanded polyglutamine repeats [see comments]. Neuron, 22, 623–33CrossRefGoogle Scholar
Sastre, J., Pallardo, F. V. & Vina, J. (1996). Glutathione, oxidative stress and aging. Age, 19, 129–39CrossRefGoogle Scholar
Sathasivam, K., Woodman, B., Mahal, A.et al. (2001). Centrosome disorganization in fibroblast cultures derived from R6/2 Huntington's disease (HD) transgenic mice and HD patients. Hum. Mol. Genet., 10, 2425–35CrossRefGoogle ScholarPubMed
Satyal, S. H., Schmidt, E., Kitagawa, K.et al. (2000). Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA, 97, 5750–5CrossRefGoogle ScholarPubMed
Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M. E. (1998). Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell, 95, 55–66CrossRefGoogle Scholar
Schubert, U., Anton, L. C., Gibbs, J., Norbury, C. C., Yewdell, J. W. & Bennink, J. R. (2000). Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature, 404, 770–4CrossRefGoogle ScholarPubMed
Schwartz, A. L. & Ciechanover, A. (1999). The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu. Rev. Med., 50, 57–74CrossRefGoogle ScholarPubMed
Sekhar, K. R., Soltaninassab, S. R., Borrelli, M. J.et al. (2000). Inhibition of the 26S proteasome induces expression of GLCLC, the catalytic subunit for gamma-glutamylcysteine synthetase. Biochem. Biophys. Res. Commun., 270, 311–17CrossRefGoogle ScholarPubMed
Seufert, W. & Jentsch, S. (1990). Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J., 9, 543–50Google ScholarPubMed
Shang, F., Gong, X., Palmer, H. J., Nowell, T. R. Jr. & Taylor, A. (1997). Age-related decline in ubiquitin conjugation in response to oxidative stress in the lens. Exp. Eye Res., 64, 21–30CrossRefGoogle ScholarPubMed
Sherman, M. & Goldberg, A. L. (1996). Involvement of molecular chaperones in intracellular protein breakdown. In Stress-inducible Cellular Responses, ed. U. Feige, R. I. Morimoto, I. Yahara, B. S. Polla, Basel: Birkhauser Verlag, pp. 57–78CrossRef
Shi, Y., Mosser, D. D. & Morimoto, R. I. (1998). Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev., 12, 654–66CrossRefGoogle ScholarPubMed
Shibata, N., Hirano, A., Kato, S.et al. (1999). Advanced glycation endproducts are deposited in neuronal hyaline inclusions: a study on familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation. Acta Neuropath., 97, 240–6CrossRefGoogle ScholarPubMed
Shimohata, T., Sato, A., Burke, J. R., Strittmatter, W. J., Tsuji, S. & Onodera, O. (2002). Expanded polyglutamine stretches form an ‘aggresome’. Neurosci. Lett., 323, 215–18CrossRefGoogle Scholar
Shimura, H., Hattori, N., Kubo, S.et al. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet., 25, 302–5CrossRefGoogle ScholarPubMed
Shimura, H., Schlossmacher, M. G., Hattori, N.et al. (2001). Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson's disease. Science, 293, 263–9CrossRefGoogle ScholarPubMed
Shringarpure, R. & Davies, K. J. (2002). Protein turnover by the proteasome in aging and disease. Free Radic. Biol. Med., 32, 1084–9CrossRefGoogle ScholarPubMed
Soltaninassab, S. R., Sekhar, K. R., Meredith, M. J. & Freeman, M. L. (2000). Multi-faceted regulation of gamma-glutamylcysteine synthetase. J. Cell Physiol., 182, 163–703.0.CO;2-1>CrossRefGoogle ScholarPubMed
Sommer, T. & Seufert, W. (1992). Genetic analysis of ubiquitin-dependent protein degradation. Experientia, 48, 172–8CrossRefGoogle ScholarPubMed
Sondheimer, N. & Lindquist, S. (2000). Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cel., 5, 163–72CrossRefGoogle Scholar
Sondheimer, N., Lopez, N., Craig, E. A. & Lindquist, S. (2001). The role of Sis1 in the maintenance of the [RNQ+] prion. EMBO J., 20, 2435–42CrossRefGoogle ScholarPubMed
Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. (1998). alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc. Natl Acad. Sci. USA, 95, 6469–73CrossRefGoogle ScholarPubMed
Srivastava, R. K., Mi, Q.-S., Hardwick, J. M. & Longo, D. L. (1999). Deletion of the loop region of Bcl-2 completely blocks paclitaxel-induced apoptosis. Proc. Natl Acad. Sci. USA, 96, 3775–80CrossRefGoogle ScholarPubMed
Stefanis, L., Larsen, K. E., Rideout, H. J., Sulzer, D. & Greene, L. A. (2001). Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci., 21, 9549–60CrossRefGoogle Scholar
Steffan, J. S., Kazantsev, A., Spasic-Boskovic, O.et al. (2000). The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl Acad. Sci. USA, 97, 6763–8CrossRefGoogle ScholarPubMed
Steffan, J. S., Bodai, L., Pallos, J.et al. (2001). Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature, 413, 739–43CrossRefGoogle ScholarPubMed
Steiner, H., Capell, A., Pesold, B.et al. (1998). Expression of Alzheimer's disease-associated presenilin-1 is controlled by proteolytic degradation and complex formation. J. Biol. Chem., 273, 32322–31CrossRefGoogle ScholarPubMed
Strickland, E., Hakala, K., Thomas, P. J. & DeMartino, G. N. (2000). Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26 S proteasome. J. Biol. Chem., 275, 5565–72CrossRefGoogle ScholarPubMed
Subramaniam, J. R., Lyons, W. E., Liu, J.et al. (2002). Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading. Nat. Neurosci., 5, 301–7CrossRefGoogle ScholarPubMed
Sugita, M., Morita, T. & Yonesaki, T. (1995). Puromycin induces apoptosis of developing chick sympathetic neurons in a similar manner to NGF-deprivation. Zool. Sci., 12, 419–25CrossRefGoogle Scholar
Szweda, P. A., Friguet, B. & Szweda, L. I. (2002). Proteolysis, free radicals, and aging. Free Radic. Biol. Med., 33, 29–36CrossRefGoogle ScholarPubMed
Takahashi, J., Fujigasaki, H., Zander, C.et al. (2002). Two populations of neuronal intranuclear inclusions in SCA7 differ in size and promyelocytic leukaemia protein content. Brain, 125, 1534–43CrossRefGoogle ScholarPubMed
Takeda, A., Mallory, M., Sundsmo, M., Honer, W., Hansen, L. & Masliah, E. (1998). Abnormal accumulation of NACP/alpha-synuclein in neurodegenerative disorders. Am. J. Path., 152, 367–72Google ScholarPubMed
Tanaka, K., Suzuki, T. & Chiba, T. (1998). The ligation systems for ubiquitin and ubiquitin-like proteins. Mol. Cel., 8, 503–12Google ScholarPubMed
Tanaka, Y., Engelender, S., Igarashi, S.et al. (2001). Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum. Mol. Genet., 10, 919–26CrossRefGoogle ScholarPubMed
Tarcsa, E., Szymanska, G., Lecker, S., O'Connor, C. M. & Goldberg, A. L. (2000). Ca2+-free calmodulin and calmodulin damaged by in vitro aging are selectively degraded by 26 S proteasomes without ubiquitination. J. Biol. Chem., 275, 20295–301CrossRefGoogle ScholarPubMed
Tatzelt, J., Zuo, J. R., Voellmy, R.et al. (1995). Scrapie prions selectively modify the stress response in neuroblastoma cells. Proc. Natl Acad. Sci. USA, 92, 2944–8CrossRefGoogle ScholarPubMed
Telenius, H., Kremer, B. & Goldberg, Y. P. (1994). Somatic and gonadal mosaicism of the huntington disease gene cag repeat in brain and sperm. Nat. Genet., 6, 409–14CrossRefGoogle ScholarPubMed
Tournier, C., Hess, P., Yang, D. D.et al. (2000). Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science, 288, 870–4CrossRefGoogle ScholarPubMed
Tsai, B., Ye, Y. & Rapoport, T. A. (2002). Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat. Rev. Mol. Cell. Biol., 3, 246–55CrossRefGoogle ScholarPubMed
Tu, P. H., Gurney, M. E., Julien, J. P., Lee, V. M. & Trojanowski, J. Q. (1997). Oxidative stress, mutant SOD1, and neurofilament pathology in transgenic mouse models of human motor neuron disease [published erratum appears in Lab. Invest. 1997 Jun;76(6): following table of contents]. Lab. Invest., 76, 441–56Google Scholar
Urushitani, M., Miyashita, T., Ohtsuka, Y., Okamura-Oho, Y., Shikama, Y. & Yamada, M. (2001). Extended polyglutamine selectively interacts with caspase-8 and -10 in nuclear aggregates. Cell Death Differ., 8, 377–86Google Scholar
Urushitani, M., Kurisu, J., Tsukita, K. & Takahashi, R. (2002). Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J. Neurochem., 83, 1030–42CrossRefGoogle ScholarPubMed
Leewen, F. W., Kleijn, D. P., Hurk, H. H.et al. (1998). Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer's and Down patients. Science, 279, 242–7CrossRefGoogle Scholar
Leeuwen, F. W., Fischer, D. F., Benne, R. & Hol, E. M. (2000). Molecular misreading. A new type of transcript mutation in gerontology. Ann. NY Acad. Sci., 908, 267–81CrossRefGoogle ScholarPubMed
Leeuwen, F. W., Gerez, L., Benne, R. & Hol, E. M. (2002). +1 Proteins and aging. Int. J. Biochem. Cell Biol., 34, 1502–5CrossRefGoogle ScholarPubMed
Vidair, C. A., Huang, R. N. & Doxsey, S. J. (1999). Heat shock causes protein aggregation and reduced protein solubility at the centrosome and other cytoplasmic locations. Int. J. Hyperthermi., 12, 681–95CrossRefGoogle Scholar
Voellmy, R. (1996). Sensing stress and responding to stress. In stress-inducible Cellular Responses, ed. U. Feige, I. Morimoto, I. Yahara & B. Polla. Basel: Birkhauser Verlag, pp. 121–37CrossRef
Waelter, S., Boeddrich, A., Lurz, R.et al. (2001). Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol. Biol. Cell., 12, 1393–407CrossRefGoogle ScholarPubMed
Wang, G. H., Mitsui, K., Kotliarova, S.et al. (1999). Caspase activation during apoptotic cell death induced by expanded polyglutamine in N2a cells. NeuroReport, 10, 2435–8CrossRefGoogle ScholarPubMed
Warrick, J. M., Chan, H. Y., Gray-Board, G. L., Chai, Y., Paulson, H. L. & Bonini, N. M. (1999). Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet., 23, 425–8CrossRefGoogle ScholarPubMed
Watt, R. & Piper, P. W. (1997). UBI4, the polyubiquitin gene of Saccharomyces cerevisiae, is a heat shock gene that is also subject to catabolite derepression control. Mol. Gen. Genet., 253, 439–47CrossRefGoogle ScholarPubMed
Welihinda, A. A., Tirasophon, W. & Kaufman, R. J. (1999). The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expression, 7, 293–300Google ScholarPubMed
Wellington, C. L., Brinkman, R. R., Okusky, J. R. & Hayden, M. R. (1997). Toward understanding the molecular pathology of huntingtons disease. Brain Path., 7, 979–1002CrossRefGoogle Scholar
Wellington, C. L., Ellerby, L. M., Hackam, A. S.et al. (1998). Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem., 273, 9158–67CrossRefGoogle ScholarPubMed
Wickner, R. B., Edskes, H. K., Roberts, B. T., Pierce, M. M., Baxa, U. & Ross, E. (2001). Prions beget prions: the [PIN+] mystery!Trends Biochem. Sci., 26, 697–9CrossRefGoogle Scholar
Wigley, W. C., Fabunmi, R. P., Lee, M. G.et al. (1999). Dynamic association of proteasomal machinery with the centrosome. J. Cell Biol., 145, 481–90CrossRefGoogle ScholarPubMed
Wojcik, C., Schroeter, D., Wilk, S., Lamprecht, J. & Paweletz, N. (1996). Ubiquitin-mediated proteolysis centers in hela cells – indication from studies of an inhibitor of the chymotrypsin-like activity of the proteasome. Euro. J. Cell Biol., 71, 311–18Google ScholarPubMed
Wyttenbach, A., Carmichael, J., Swartz, J.et al. (2000). Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington's disease. Proc. Natl Acad. Sci. USA, 97, 2898–903CrossRefGoogle Scholar
Xi, L., Tekin, D., Bhargava, P. & Kukreja, R. C. (2001). Whole body hyperthermia and preconditioning of the heart: basic concepts, complexity, and potential mechanisms. Int. J. Hyperthermi., 17, 439–55Google ScholarPubMed
Xiong, X., Chong, E. & Skach, W. R. (1999). Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductance regulator is linked to retrograde translocation from the ER membrane. J. Biol. Chem., 274, 2616–24CrossRefGoogle ScholarPubMed
Yamamoto, A., Lucas, J. J. & Hen, R. (2000). Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell, 101, 57–66CrossRefGoogle Scholar
Yamashita, N., Hoshida, S., Taniguchi, N., Kuzuya, T. & Hori, M. (1998). Whole-body hyperthermia provides biphasic cardioprotection against ischemia/reperfusion injury in the rat. Circulation, 98, 1414–21CrossRefGoogle ScholarPubMed
Yang, D. D., Kuan, C. Y., Whitmarsh, A. J.et al. (1997). Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature, 389, 865–70CrossRefGoogle ScholarPubMed
Yasuda, S., Inoue, K., Hirabayashi, M.et al. (1999). Triggering of neuronal cell death by accumulation of activated SEK1 on nuclear polyglutamine aggregations in PML bodies. Genes to Cells, 4, 743–56CrossRefGoogle ScholarPubMed
Young, A. (1998). Huntington's Disease and other Trinucleotide Repeat Disorders. New York: Scientific American, Inc.
Zeron, M. M., Chen, N., Moshaver, A.et al. (2001). Mutant huntingtin enhances excitotoxic cell death. Mol. Cell. Neurosci., 17, 41–53CrossRefGoogle ScholarPubMed
Zeron, M. M., Hansson, O., Chen, N.et al. (2002). Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron, 33, 849–60CrossRefGoogle Scholar
Zhang, Y., Nijbroek, G., Sullivan, M. L.et al. (2001). Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol. Biol. Cel., 12, 1303–14CrossRefGoogle Scholar
Zhou, H., Li, S. H. & Li, X. J. (2001). Chaperone suppression of cellular toxicity of huntingtin is independent of polyglutamine aggregation. J. Biol. Chem., 276, 48417–24CrossRefGoogle ScholarPubMed
Zou, J. Y., Guo, Y. L., Guettouche, T., Smith, D. F. & Voellmy, R. (1998). Repression of heat shock transcription factor Hsf1 activation by Hsp90 (Hsp90 complex) that forms a stress-sensitive complex with Hsf1. Cell, 94, 471–80CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×