Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T03:10:24.862Z Has data issue: false hasContentIssue false

16 - Toxic animal models

from Part I - Basic aspects of neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Serge Przedborski
Affiliation:
Departments of Neurology and Pathology, and Center for Neurobiology and Behavior, Columbia University, NY, USA
Kim Tieu
Affiliation:
Department of Environmental Medicine and Center for Aging and Developmental Biology, University of Rochester, NY, USA
Get access

Summary

Introduction

As discussed elsewhere (Przedborski et al., 2003), the term “neurodegenerative disease” refers to a group of neurological disorders with heterogeneous clinical and pathological expressions. These diseases are all characterized by a loss of specific subpopulations of neurons confined to functional anatomic systems, arising in most cases for unknown reasons and progressing in a relentless manner. Among the variety of neurodegenerative disorders, the lion's share of attention has been given only to a handful, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). So far, the most consistent risk factor for developing a neurodegenerative disorder, especially AD and PD, is increasing age. Over the past century the growth rate of the population age 65 and beyond in the industrialized countries has far exceeded that of the population as a whole. Thus it can be anticipated that, over the next generations, the proportion of elderly citizens will double and, with this, the number of individuals suffering from a neurodegenerative disorder. This prediction is at the centre of the growing concerns from the medical community and from legislators, as one can easily foresee a dramatic increase in the emotional, physical, and financial burden on patients, caregivers, and society related to these disabling illnesses. The problem is made worse by the fact that, although to date several approved drugs do, to some extent, alleviate symptoms of several neurodegenerative diseases, their chronic use is often associated with debilitating side effects, and none seems to stop the progression of the degenerative processes.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 196 - 221
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K., Taguchi, K., Wasai, T.et al. (2001). Stereoselective effect of (R)- and (S)-1-methyl-1,2,3,4-tetrahydroisoquinolines on a mouse model of Parkinson's disease. Brain Res. Bull., 56, 55–60CrossRefGoogle ScholarPubMed
Agid, Y., Javoy, F., Glowinski, J., Bouvet, D. & Sotelo, C. (1973). Injection of 6-hydroxydopamine into the substantia nigra of the rat. II. Diffusion and specificity. Brain Res., 58, 291–301CrossRefGoogle ScholarPubMed
Albers, D. S. & Sonsalla, P. K. (1995). Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents. J. Pharmacol. Exp. Ther., 275, 1104–14Google ScholarPubMed
Albin, R. L. & Greenamyre, J. T. (1992). Alternative excitotoxic hypotheses. Neurology, 42, 733–8CrossRefGoogle ScholarPubMed
Ali, S. F., Newport, G. D., Holson, R. R., Slikker, W., Bowyer, J. F.Jr. (1994). Low environmental temperatures or pharmacologic agents that produce hypothermia decrease methamphetamine neurotoxicity in mice. Brain Res., 658, 33–8CrossRefGoogle ScholarPubMed
Alston, T. A., Mela, L. & Bright, H. J. (1977). 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc. Natl Acad. Sci., USA, 74, 3767–71CrossRefGoogle ScholarPubMed
Antkiewicz-Michaluk, L., Romanska, I.Papla, I.et al. (2000). Neurochemical changes induced by acute and chronic administration of 1,2,3,4-tetrahydroisoquinoline and salsolinol in dopaminergic structures of rat brain. Neuroscience, 96, 59–64CrossRefGoogle ScholarPubMed
Ara, J., Przedborski, S., Naini, A. B.et al. (1998). Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc. Natl Acad. Sci., USA, 95, 7659–63CrossRefGoogle Scholar
Araki, M., McGeer, P. L. & McGeer, E. G. (1985). Differential effect of kainic acid on somatostatin, GABAergic and cholinergic neurons in the rat striatum. Neurosci. Lett., 53, 197–202CrossRefGoogle ScholarPubMed
Axt, K. J., Mamounas, L. A. & Molliver, M. E. (1994). Structural features of amphetamine neurotoxicity in the brain. In Amphetamine and its Analogs. Psychopharmacology, Toxicology, and Abuse, ed. A. K. Cho & D. S. Segal, pp. 315–367. New York: Academic Press
Bankiewicz, K. S., Oldfield, E. H., Chiueh, C. C., Doppman, J. L., Jacobowitz, D. M. & Kopin, I. J. (1986). Hemiparkinsonism in monkeys after unilateral internal carotid artery infusion of 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine (MPTP). Life Sci., 39, 7–16CrossRefGoogle Scholar
Beal, M. F., Kowall, N. W., Ellison, D. W., Mazurek, M. F., Swartz, K. J. & Martin, J. B. (1986). Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature, 321, 168–71CrossRefGoogle ScholarPubMed
Beal, M. F., Ferrante, R. J., Swartz, K. J. & Kowall, N. W. (1991). Chronic quinolinic acid lesions in rats closely resemble Huntington's disease. J. Neurosc., 11, 1649–59CrossRefGoogle ScholarPubMed
Beal, M. F., Brouillet, E., Jenkins, B., Henshaw, R., Rosen, B. & Hyman, B. T. (1993a). Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J. Neurochem., 61, 1147–50CrossRefGoogle Scholar
Beal, M. F., Brouillet, E., Jenkins, B. G.et al. (1993b). Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci., 13, 4181–92CrossRefGoogle Scholar
Ben Ari, Y. & Cossart, R. (2000). Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci., 23, 580–7CrossRefGoogle ScholarPubMed
Bergman, H., Wichmann, T. & DeLong, M. R. (1990). Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science, 249, 1436–8CrossRefGoogle ScholarPubMed
Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V. & Greenamyre, J. T. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci., 3, 1301–6CrossRefGoogle ScholarPubMed
Bezard, E., Imbert, C., Deloire, X., Bioulac, B. & Gross, C. E. (1997). A chronic MPTP model reproducing the slow evolution of Parkinson's disease: evolution of motor symptoms in the monkey. Brain Res., 766, 107–12CrossRefGoogle ScholarPubMed
Bezard, E., Gross, C. E., Fournier, M. C., Dovero, S., Bloch, B. & Jaber, M. (1999). Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp. Neurol., 155, 268–73CrossRefGoogle ScholarPubMed
Bjorklund, L. M., Sanchez-Pernaute, R., Chung, S.et al. (2002). Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl Acad. Sci., USA, 99, 2344–9CrossRefGoogle Scholar
Blum, D., Torch, S., Lambeng, N.et al. (2001). Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog. Neurobiol., 65, 135–72CrossRefGoogle ScholarPubMed
Boegman, R. J., Smith, Y. & Parent, A. (1987). Quinolinic acid does not spare striatal neuropeptide Y-immunoreactive neurons. Brain Res., 415, 178–82CrossRefGoogle Scholar
Borlongan, C. V., Koutouzis, T. K., Freeman, T. B., Cahill, D. W. & Sanberg, P. R. (1995). Behavioral pathology induced by repeated systemic injections of 3-nitropropionic acid mimics the motoric symptoms of Huntington's disease. Brain Res., 697, 254–7CrossRefGoogle ScholarPubMed
Borlongan, C. V., Koutouzis, T. K. & Sanberg, P. R. (1997). 3-Nitropropionic acid animal model and Huntington's disease. Neurosci. Biobehav. Rev., 21, 289–93CrossRefGoogle ScholarPubMed
Bourn, W. M., Chin, L. & Picchioni, A. L. (1972). Enhancement of audiogenic seizure by 6-hydroxydopamine. J. Pharm. Pharmacol., 24, 913–14CrossRefGoogle ScholarPubMed
Breese, G. R., Baumeister, A. A., McCown, T. J., Emerick, S. G., Frye, G. D. & Mueller, R. A. (1984). Neonatal-6-hydroxydopamine treatment: model of susceptibility for self-mutilation in the Lesch–Nyhan syndrome. Pharmacol. Biochem. Behav., 21, 459–61CrossRefGoogle ScholarPubMed
Breese, G. R., Criswell, H. E., Duncan, G. E. & Mueller, R. A. (1990). A dopamine deficiency model of Lesch–Nyhan disease – the neonatal-6-OHDA-lesioned rat. Brain Res. Bull., 25, 477–84CrossRefGoogle ScholarPubMed
Brooks, A. I., Chadwick, C. A., Gelbard, H. A., Cory-Slechta, D. A. & Federoff, H. J. (1999). Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res., 823, 1–10CrossRefGoogle ScholarPubMed
Brouillet, E., Jenkins, B. G., Hyman, B. T.et al. (1993). Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem., 60, 356–9CrossRefGoogle ScholarPubMed
Brouillet, E., Hantraye, P., Ferrante, R. J.et al. (1995). Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc. Natl Acad. Sci., USA, 92, 7105–9CrossRefGoogle ScholarPubMed
Brouillet, E., Guyot, M. C., Mittoux, V.et al. (1998). Partial inhibition of brain succinate dehydrogenase by 3-nitropropionic acid is sufficient to initiate striatal degeneration in rat. J. Neurochem., 70, 794–805CrossRefGoogle ScholarPubMed
Brouillet, E., Conde, F., Beal, M. F. & Hantraye, P. (1999). Replicating Huntington's disease phenotype in experimental animals. Prog. Neurobiol., 59, 427–68CrossRefGoogle ScholarPubMed
Burns, L. H., Pakzaban, P., Deacon, T. W.et al. (1995). Selective putaminal excitotoxic lesions in non-human primates model the movement disorder of Huntington disease. Neuroscience, 64, 1007–17CrossRefGoogle ScholarPubMed
Calabresi, P., Gubellini, P., Picconi, B.et al. (2001). Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine. J. Neurosci., 21, 5110–20CrossRefGoogle ScholarPubMed
Callahan, B. T. & Ricaurte, G. A. (1998). Effect of 7-nitroindazole on body temperature and methamphetamine-induced dopamine toxicity. NeuroReport, 9, 2691–5CrossRefGoogle ScholarPubMed
Cao, L., Filipov, N. M. & Lawrence, D. A. (2002). Sympathetic nervous system plays a major role in acute cold/restraint stress inhibition of host resistance to Listeria monocytogenes. J. Neuroimmunol., 125, 94–102CrossRefGoogle Scholar
Chan, P., DeLanney, L. E., Irwin, I., Langston, J. W. & Di Monte, D. (1991). Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine in mouse brain. J. Neurochem., 57, 348–51CrossRefGoogle ScholarPubMed
Chan, P., DeLanney, L. E., Irwin, I., Langston, J. W. & Di Monte, D. (1992). MPTP-induced ATP loss in mouse brain. Ann. NY Acad. Sci., 648, 306–8CrossRefGoogle ScholarPubMed
Clausing, P. & Bowyer, J. F. (1999). Time course of brain temperature and caudate/putamen microdialysate levels of amphetamine and dopamine in rats after multiple doses of d-amphetamine. Ann. NY Acad. Sci., 890, 495–504CrossRefGoogle ScholarPubMed
Cleeter, M. W., Cooper, J. M. & Schapira, A. H. (1992). Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement. J. Neurochem., 58, 786–9CrossRefGoogle ScholarPubMed
Cohen, G. & Werner, P. (1994). Free radicals, oxidative stress, and neurodegeneration. In Neurodegenerative Diseases, ed. D. B. Calne, pp. 139–161. Philadelphia: W. B. Saunders
Cooper, J. M. & Clark, J. B. (1994). The structural organization of the mitochondrial respiration chain. In Mitochondrial Disorders in Neurology, ed. A. H. Schapira & S. DiMauro, pp. 1–30. Boston: Butterworth-Heinemann Ltd
Coyle, J. T. & Schwarcz, R. (1976). Lesion of striatal neurones with kainic acid provides a model for Huntington's chorea. Nature, 263, 244–6CrossRefGoogle ScholarPubMed
Coyle, J. T. & Schwarcz, R. (1983). The use of excitatory amino acids as selective neurotoxins. In Handbook of Chemical Neuroanatomy. Method in Chemical Neuroanatomy, ed. A. Björklund & T. Hökfelt, pp. 508–27. New York: Elsevier
Coyle, J. T., Molliver, M. E. & Kuhar, M. J. (1978). In situ injection of kainic acid: a new method for selectively lesioning neuronal cell bodies while sparing axons of passage. J. Comp. Neurol., 180, 301–24CrossRefGoogle ScholarPubMed
Cubells, J. F., Rayport, S., Rajendran, G. & Sulzer, D. (1994). Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J. Neurosci., 14, 2260–71CrossRefGoogle ScholarPubMed
Czlonkowska, A., Kohutnicka, M., Kurkowska-Jastrzebska, I. & Czlonkowski, A. (1996). Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson's disease mice model. Neurodegeneration, 5, 137–43CrossRefGoogle ScholarPubMed
Dauer, W. & Przedborski, S. (2003). Parkinson's disease: mechanisms and models. Neuron, 39, 889–909CrossRefGoogle ScholarPubMed
Davey, G. P. & Clark, J. B. (1996). Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria. J. Neurochem., 66, 1617–24CrossRefGoogle ScholarPubMed
Davidson, C., Gow, A. J., Lee, T. H. & Ellinwood, E. H. (2001). Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res. Rev., 36, 1–22CrossRefGoogle ScholarPubMed
Davies, S. W. & Roberts, P. J. (1987). No evidence for preservation of somatostatin-containing neurons after intrastriatal injections of quinolinic acid. Nature, 327, 326–9CrossRefGoogle ScholarPubMed
Davis, G. C., Williams, A. C., Markey, S. P.et al. (1979). Chronic parkinsonism secondary to intravenous injection of meperidine analogs. Psychiatry Res., 1, 249–54CrossRefGoogle Scholar
Day, B. J., Patel, M., Calavetta, L., Chang, L. Y. & Stamler, J. S. (1999). A mechanism of paraquat toxicity involving nitric oxide synthase. Proc. Natl. Acad. Sci., USA, 96, 12760–5CrossRefGoogle ScholarPubMed
Gori, N., Froio, F., Strongoli, M. C., Francesco, A., Calo, M. & Nistico, G. (1988). Behavioural and electrocortical changes induced by paraquat after injection in specific areas of the brain of the rat. Neuropharmacology, 27, 201–7CrossRefGoogle ScholarPubMed
Dehmer, T., Lindenau, J., Haid, S., Dichgans, J. & Schulz, J. B. (2000). Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J. Neurochem., 74, 2213–16CrossRefGoogle ScholarPubMed
Deitrich, R. & Erwin, V. (1980). Biogenic amine-aldehyde condensation products: tetrahydroisoquinolines and tryptolines (beta-carbolines). Annu. Rev. Pharmacol. Toxicol., 20, 55–80CrossRefGoogle Scholar
Donovan, D. M., Miner, L. L., Perry, M. P.et al. (1999). Cocaine reward and MPTP toxicity: alteration by regional variant dopamine transporter overexpression. Mol. Brain Res., 73, 37–49CrossRefGoogle ScholarPubMed
Dugan, L. L. & Choi, D. W. (1994). Excitotoxicity, free radicals, and cell membrane changes. Ann. Neurol., 35 Suppl., S17–S21CrossRefGoogle ScholarPubMed
Dunnett, S. B. & Iversen, S. D. (1981). Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats. Behav. Brain Res., 2, 189–209CrossRefGoogle ScholarPubMed
Eberhardt, O., Coelln, R. V., Kugler, S.et al. (2000). Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J. Neurosci., 20, 9126–34CrossRefGoogle ScholarPubMed
Emerich, D. F., Zubricki, E. M., Shipley, M. T., Norman, A. B. & Sanberg, P. R. (1991). Female rats are more sensitive to the locomotor alterations following quinolinic acid-induced striatal lesions: effects of striatal transplants. Exp. Neurol., 111, 369–78CrossRefGoogle ScholarPubMed
Faull, R. L. & Laverty, R. (1969). Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra. Exp. Neurol., 23, 332–40CrossRefGoogle ScholarPubMed
Ferger, B., Eberhardt, O., Teismann, P., Groote, C. & Schulz, J. B. (1999). Malonate-induced generation of reactive oxygen species in rat striatum depends on dopamine release but not on NMDA receptor activation. J. Neurochem., 73, 1329–32CrossRefGoogle Scholar
Fernagut, P. O., Diguet, E., Stefanova, N.et al. (2002). Subacute systemic 3-nitropropionic acid intoxication induces a distinct motor disorder in adult C57Bl/6 mice: behavioural and histopathological characterisation. Neuroscience, 114, 1005–17CrossRefGoogle ScholarPubMed
Ferrante, R. J., Schulz, J. B., Kowall, N. W. & Beal, M. F. (1997). Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra. Brain Res., 753, 157–62CrossRefGoogle Scholar
Forno, L. S., Langston, J. W., DeLanney, L. E., Irwin, I. & Ricaurte, G. A. (1986). Locus ceruleus lesions and eosinophilic inclusions in MPTP- treated monkeys. Ann. Neurol., 20, 449–55CrossRefGoogle ScholarPubMed
Forno, L. S., DeLanney, L. E., Irwin, I. & Langston, J. W. (1993). Similarities and differences between MPTP-induced parkinsonism and Parkinson's disease: Neuropathologic considerations. Adv. Neurol., 60, 600–8Google ScholarPubMed
Fumagalli, F., Gainetdinov, R. R., Valenzano, K. J. & Caron, M. G. (1998). Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter. J. Neurosci., 18, 4861–9CrossRefGoogle ScholarPubMed
Fumagalli, F., Gainetdinov, R. R., Wang, Y. M., Valenzano, K. J., Miller, G. W. & Caron, M. G. (1999). Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J. Neurosci., 19, 2424–31CrossRefGoogle ScholarPubMed
Funata, N., Song, S. Y., Okeda, R., Funata, M. & Higashino, F. (1984). A study of experimental cyanide encephalopathy in the acute phase – physiological and neuropathological correlation. Acta Neuropathol. (Berl., 64, 99–107CrossRefGoogle ScholarPubMed
Gaddy, J. R., Britt, M. D., Neill, D. B. & Haigler, H. J. (1979). Susceptibility of rat neostriatum to damage by kainic acid: age dependence. Brain Res., 176, 192–6CrossRefGoogle ScholarPubMed
Gao, H. M., Hong, J. S., Zhang, W. & Liu, B. (2002). Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci., 22, 782–90CrossRefGoogle ScholarPubMed
Giovanni, A., Sieber, B.-A., Heikkila, R. E. & Sonsalla, P. K. (1994a). Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 1: Systemic administration. J. Pharmacol. Exp. Ther., 270, 1000–7Google Scholar
Giovanni, A., Sieber, B. A., Heikkila, R. E. & Sonsalla, P. K. (1991). Correlation between the neostriatal content of the 1-methyl-4- phenylpyridinium species and dopaminergic neurotoxicity following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration to several strains of mice. J. Pharmacol. Exp. Ther., 257, 691–7Google Scholar
Giovanni, A., Sonsalla, P. K. & Heikkila, R. E. (1994b). Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine. Part 2: Central administration of 1-methyl-4-phenylpyridinium. J. Pharmacol. Exp. Ther., 270, 1008–14Google Scholar
Graham, D. G. (1978). Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol., 14, 633–43Google ScholarPubMed
Grant, H., Lantos, P. L. & Parkinson, C. (1980). Cerebral damage in paraquat poisoning. Histopathology, 4, 185–95CrossRefGoogle ScholarPubMed
Greene, J. G. & Greenamyre, J. T. (1996). Manipulation of membrane potential modulates malonate-induced striatal excitotoxicity in vivo. J. Neurochem., 66, 637–43CrossRefGoogle ScholarPubMed
Greene, J. G., Porter, R. H. P., Eller, R. V. & Greenamyre, J. T. (1993). Inhibition of succinate dehydrogenase by malonic acid produces an ‘excitotoxic’ lesion in rat striatum. J. Neurochem., 61, 1151–4CrossRefGoogle ScholarPubMed
Guyot, M. C. & Hantraye, P., Dolan, R., Palfi, S., Maziere, M. & Brouillet, E. (1997). Quantifiable bradykinesia, gait abnormalities and Huntington's disease-like striatal lesions in rats chronically treated with 3-nitropropionic acid. Neuroscience, 79, 45–56CrossRefGoogle ScholarPubMed
Hamre, K., Tharp, R., Poon, K., Xiong, X. & Smeyne, R. J. (1999). Differential strain susceptibility following 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP) administration acts in an autosomal dominant fashion: quantitative analysis in seven strains of Mus musculus. Brain Res., 828, 91–103CrossRefGoogle Scholar
Hantraye, P., Riche, D., Maziere, M. & Isacson, O. (1990). A primate model of Huntington's disease: behavioral and anatomical studies of unilateral excitotoxic lesions of the caudate-putamen in the baboon. Exp. Neurol., 108, 91–104CrossRefGoogle ScholarPubMed
Hartmann, A., Troadec, J. D., Hunot, S.et al. (2001). Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson's disease, but pathway inhibition results in neuronal necrosis. J. Neurosci., 21, 2247–55CrossRefGoogle ScholarPubMed
Hasegawa, E., Takeshige, K., Oishi, T., Murai, Y. & Minakami, S. (1990). 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem. Biophys. Res. Commun., 170, 1049–55CrossRefGoogle ScholarPubMed
Hatzidimitriou, G., McCann, U. D. & Ricaurte, G. A. (1999). Altered serotonin innervation patterns in the forebrain of monkeys treated with (+/-)3,4-methylenedioxymethamphetamine seven years previously: factors influencing abnormal recovery. J. Neurosci., 19, 5096–107CrossRefGoogle ScholarPubMed
Hefti, F., Melamed, E. & Wurtman, R. J. (1980). Partial lesions of the dopaminergic nigrostriatal system in rat brain: biochemical characterization. Brain Res., 195, 123–37CrossRefGoogle ScholarPubMed
Heikkila, R. E., Nicklas, W. J., Vyas, I. & Duvoisin, R. C. (1985). Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neurosci. Lett., 62, 389–94CrossRefGoogle ScholarPubMed
Heikkila, R. E., Sieber, B. A., Manzino, L. & Sonsalla, P. K. (1989). Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. Mol. Chem. Neuropathol., 10, 171–83CrossRefGoogle ScholarPubMed
Herve, D., Studler, J. M., Blanc, G., Glowinski, J. & Tassin, J. P. (1986). Partial protection by desmethylimipramine of the mesocortical dopamine neurones from the neurotoxic effect of 6-hydroxydopamine injected in ventral mesencephalic tegmentum. The role of noradrenergic innervation. Brain Res., 383, 47–53CrossRefGoogle Scholar
Higgins, D. S., Greenamyre, J. T.Jr. (1996). [3H]dihydrorotenone binding to NADH: ubiquinone reductase (Complex I) of the electron transport chain: An autoradiographic study. J. Neurosci., 16, 3807–16CrossRefGoogle ScholarPubMed
Hoglinger, G. U., Feger, J., Annick, P.et al. (2003). Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J. Neurochem., 84, 1–12CrossRefGoogle ScholarPubMed
Hong, J. S., Yang, H. Y., Racagni, G. & Costa, E. (1977). Projections of substance P containing neurons from neostriatum to substantia nigra. Brain Res, 122, 541–4CrossRefGoogle ScholarPubMed
Hruska, R. E. & Silbergeld, E. K. (1979). Abnormal locomotion in rats after bilateral intrastriatal injection of kainic acid. Life Sci., 25, 181–93CrossRefGoogle ScholarPubMed
Hughes, J. T. (1988). Brain damage due to paraquat poisoning: a fatal case with neuropathological examination of the brain. Neurotoxicology, 9, 243–8Google Scholar
Jackson-Lewis, V., Jakowec, M., Burke, R. E. & Przedborski, S. (1995). Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration, 4, 257–69CrossRefGoogle ScholarPubMed
Javitch, J. A., D'Amato, R. J., Strittmatter, S. M. & Snyder, S. H. (1985). Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridinium by dopamine neurons explain selective toxicity. Proc. Natl Acad. Sci., USA, 82, 2173–7CrossRefGoogle Scholar
Javoy, F., Sotelo, C., Herbert, A. & Agid, Y. (1976). Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system. Brain Res., 102, 210–15CrossRefGoogle ScholarPubMed
Jeon, B. S., Jackson-Lewis, V. & Burke, R. E. (1995). 6-hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration, 4, 131–7CrossRefGoogle ScholarPubMed
Jiang, H., Jackson-Lewis, V., Muthane, U.et al. (1993). Adenosine receptor antagonists potentiate dopamine receptor agonist-induced rotational behavior in 6-hydroxydopamine-lesioned rats. Brain Res., 613, 347–51CrossRefGoogle ScholarPubMed
Jonsson, G. (1980). Chemical neurotoxins as denervation tools in neurobiology. Annu. Rev. Neurosci., 3, 169–87CrossRefGoogle ScholarPubMed
Jonsson, G. (1983). Chemical lesioning techniques: monoamine neurotoxins. In Handbook of Chemical Neuroanatomy. Vol. 1: Methods in Chemical Neuroanatomy, ed. A. Björklund & T. Hökfelt, pp. 463–507. Amsterdam: Elsevier Science Publishers B. V.
Jonsson, G., Fuxe, K., Hokfelt, T. & Goldstein, M. (1976). Resistance of central phenylethanolamine-n-methyl transferase containing neurons to 6-hydroxydopamine. Med. Biol., 54, 421–6Google ScholarPubMed
Joyce, J. N., Frohna, P. A. & Neal-Beliveau, B. S. (1996). Functional and molecular differentiation of the dopamine system induced by neonatal denervation. Neurosci. Biobehav. Rev., 20, 453–86CrossRefGoogle ScholarPubMed
Kaal, E. C., Vlug, A. S., Versleijen, M. W., Kuilman, M., Joosten, E. A. & Bar, P. R. (2000). Chronic mitochondrial inhibition induces selective motoneuron death in vitro: a new model for amyotrophic lateral sclerosis. J. Neurochem., 74, 1158–65CrossRefGoogle ScholarPubMed
Kakhniashvili, D., Mayor, J. A., Gremse, D. A., Xu, Y. & Kaplan, R. S. (1997). Identification of a novel gene encoding the yeast mitochondrial dicarboxylate transport protein via overexpression, purification, and characterization of its protein product. J. Biol. Chem., 272, 4516–21CrossRefGoogle ScholarPubMed
Kanazawa, I., Kimura, M., Murata, M., Tanaka, Y. & Cho, F. (1990). Choreic movements in the macaque monkey induced by kainic acid lesions of the striatum combined with L-dopa. Pharmacological, biochemical and physiological studies on neural mechanisms. Brain, 113, 509–35CrossRefGoogle ScholarPubMed
Kanazawa, I., Tanaka, Y. & Cho, F. (1986). ‘Choreic’ movement induced by unilateral kainate lesion of the striatum and L-DOPA administration in monkey. Neurosci. Lett., 71, 241–6CrossRefGoogle ScholarPubMed
Kanthasamy, A. G., Borowitz, J. L., Pavlakovic, G. & Isom, G. E. (1994). Dopaminergic neurotoxicity of cyanide: neurochemical, histological, and behavioral characterization. Toxicol. Appl. Pharmacol., 126, 156–63CrossRefGoogle ScholarPubMed
Kaul, C. L. (1999). Role of sympathetic nervous system in experimental hypertension and diabetes mellitus. Clin. Exp. Hypertens., 21, 95–112CrossRefGoogle ScholarPubMed
Khalil, Z. & Helme, R. D. (1989). Sympathetic neurons modulate plasma extravasation in the rat through a non-adrenergic mechanism. Clin. Exp. Neurol., 26, 45–50Google ScholarPubMed
Kilbourn, M. R., Charalambous, A., Frey, K. A., Sherman, P., Higgins, D. S. Jr., & Greenamyre, J. T. (1997). Intrastriatal neurotoxin injections reduce in vitro and in vivo binding of radiolabeled rotenoids to mitochondrial complex I. J. Cereb. Blood Flow Metab., 17, 265–72CrossRefGoogle ScholarPubMed
Kirik, D., Georgievska, B., Burger, C.et al. (2002). Reversal of motor impairments in parkinsonian rats by continuous intrastriatal delivery of L-dopa using rAAV-mediated gene transfer. Proc. Natl Acad. Sci., USA, 99, 4708–13CrossRefGoogle ScholarPubMed
Kita, T., Matsunari, Y., Saraya, T.et al. (2000). Methamphetamine-induced striatal dopamine release, behavior changes and neurotoxicity in BALB/c mice. Int. J. Dev. Neurosci., 18, 521–30CrossRefGoogle ScholarPubMed
Klaidman, L. K., Adams, J. D., Leung, A. C.Jr., Kim, S. S. & Cadenas, E. (1993). Redox cycling of MPP+: evidence for a new mechanism involving hydride transfer with xanthine oxidase, aldehyde dehydrogenase, and lipoamide dehydrogenase. Free Radic. Biol. Med., 15, 169–79CrossRefGoogle ScholarPubMed
Klivenyi, P., Andreassen, O. A., Ferrante, R. J.et al. (2000). Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3-nitropropionic acid, and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. J. Neurosci., 20, 1–7CrossRefGoogle ScholarPubMed
Kohler, C. & Schwarcz, R. (1983). Comparison of ibotenate and kainate neurotoxicity in rat brain: a histological study. Neuroscience, 8, 819–35CrossRefGoogle ScholarPubMed
Kohutnicka, M., Lewandowska, E., Kurkowska-Jastrzebska, I., Czlonkowski, A. & Czlonkowska, A. (1998). Microglial and astrocytic involvement in a murine model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology, 39, 167–80CrossRefGoogle Scholar
Kopin, I. J. & Markey, S. P. (1988). MPTP toxicity: implication for research in Parkinson's disease. Annu. Rev. Neurosci., 11, 81–96CrossRefGoogle Scholar
Kotake, Y., Yoshida, M., Ogawa, M., Tasaki, Y., Hirobe, M. & Ohta, S. (1996). Chronic administration of 1-benzyl-1,2,3,4-tetrahydroisoquinoline, an endogenous amine in the brain, induces parkinsonism in a primate. Neurosci. Lett., 217, 69–71CrossRefGoogle ScholarPubMed
Langston, J. W. (1987). MPTP: the promise of a new neurotoxin. In Movement Disorders 2, ed. C. D. Marsden & S. Fahn, pp. 73–90. London: Butterworths
Langston, J. W. & Irwin, I. (1986). MPTP: current concepts and controversies. Clin. Neuropharmacol., 9, 485–507CrossRefGoogle ScholarPubMed
Langston, J. W., Ballard, P. & Irwin, I. (1983). Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 979–80CrossRefGoogle ScholarPubMed
Langston, J. W., Forno, L. S., Tetrud, J., Reeves, A. G., Kaplan, J. A. & Karluk, D. (1999). Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine exposure. Ann. Neurol., 46, 598–6053.0.CO;2-F>CrossRefGoogle ScholarPubMed
Lapointe, N., St-Hilaire, M., Martinoli, M. G.et al. (2004). Rotenone induces non-specific central nervous system and systemic toxicity. FASEB J., 18, 717–19CrossRefGoogle ScholarPubMed
Larsen, K. E, Fon, E. A., Hastings, T. G., Edwards, R. H. & Sulzer, D. (2002). Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J. Neurosci., 22, 8951–60CrossRefGoogle ScholarPubMed
Lee, W. T., Yin, H. S. & Shen, Y. Z. (2002). The mechanisms of neuronal death produced by mitochondrial toxin 3-nitropropionic acid: the roles of N-methyl-D-aspartate glutamate receptors and mitochondrial calcium overload. Neuroscience, 112, 707–16CrossRefGoogle ScholarPubMed
Levivier, M., Holemans, S., Togasaki, D. M., Maloteaux, J.-M., Brotchi, J. & Przedborski, S. (1994). Quantitative assessment of quinolinic acid-induced striatal toxicity in rats using radioligand binding assays. Neurol. Res., 16, 194–200CrossRefGoogle ScholarPubMed
Liberatore, G., Jackson-Lewis, V., Vukosavic, S.et al. (1999). Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Nat. Med., 5, 1403–9CrossRefGoogle Scholar
Liou, H. H., Chen, R. C., Tsai, Y. F., Chen, W. P., Chang, Y. C. & Tsai, M. C. (1996). Effects of paraquat on the substantia nigra of the wistar rats: neurochemical, histological, and behavioral studies. Toxicol. Appl. Pharmacol., 137, 34–41CrossRefGoogle ScholarPubMed
Liou, H. H., Tsai, M. C., Chen, C. J.et al. (1997). Environmental risk factors and Parkinson's disease: a case-control study in Taiwan. Neurology, 48, 1583–8CrossRefGoogle ScholarPubMed
Liu, Y., Roghani, A. & Edwards, R. H. (1992). Gene transfer of a reserpine-sensitive mechanism of resistance to N-methyl-4-phenylpyridinium. Proc. Natl Acad. Sci., USA, 89, 9074–8CrossRefGoogle ScholarPubMed
Lorenc-Koci, E., Smialowska, M., Antkiewicz-Michaluk, L., Golembiowska, K., Bajkowska, M. & Wolfarth, S. (2000). Effect of acute and chronic administration of 1,2,3,4-tetrahydroisoquinoline on muscle tone, metabolism of dopamine in the striatum and tyrosine hydroxylase immunocytochemistry in the substantia nigra, in rats. Neuroscience, 95, 1049–59CrossRefGoogle Scholar
Lotharius, J. & O'Malley, K. L. (2000). The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J. Biol. Chem., 275, 38581–8CrossRefGoogle ScholarPubMed
Lotharius, J., Dugan, L. L. & O'Malley, K. L. (1999). Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J. Neurosci., 19, 1284–93CrossRefGoogle ScholarPubMed
Luthman, J., Bolioli, B., Tsutsumi, T., Verhofstad, A. & Jonsson, G. (1987). Sprouting of striatal serotonin nerve terminals following selective lesions of nigro-striatal dopamine neurons in neonatal rat. Brain Res. Bull., 19, 269–74CrossRefGoogle ScholarPubMed
Luthman, J., Fredriksson, A., Sundstrom, E., Jonsson, G. & Archer, T. (1989). Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage. Behav. Brain Res., 33, 267–77CrossRefGoogle ScholarPubMed
Malberg, J. E. & Seiden, L. S. (1998). Small changes in ambient temperature cause large changes in 3,4-methylenedioxymethamphetamine (MDMA)-induced serotonin neurotoxicity and core body temperature in the rat. J. Neurosci., 18, 5086–94CrossRefGoogle ScholarPubMed
Manning-Bog, A. B., McCormack, A. L., Li, J., Uversky, V. N., Fink, A. L. & Di Monte, D. A. (2002). The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J. Biol. Chem., 277, 1641–4CrossRefGoogle ScholarPubMed
Maragos, W. F., Jakel, R. J., Pang, Z. & Geddes, J. W. (1998). 6-Hydroxydopamine injections into the nigrostriatal pathway attenuate striatal malonate and 3-nitropropionic acid lesions. Exp. Neurol., 154, 637–44CrossRefGoogle ScholarPubMed
Marey-Semper, I., Gelman, M. & Lévi-Strauss, M. (1995). A selective toxicity toward cultured mesencephalic dopaminergic neurons is induced by the synergistic effects of energetic metabolism impairment and NMDA receptor activation. J. Neurosci., 15, 5912–18CrossRefGoogle ScholarPubMed
Marshall, J. F., Navarrete, R. & Joyce, J. N. (1989). Decreased striatal D1 binding density following mesotelencephalic 6-hydroxydopamine injections: an autoradiographic analysis. Brain Res., 493, 247–57CrossRefGoogle ScholarPubMed
Marti, M. J., James, C. J., Oo, T. F., Kelly, W. J. & Burke, R. E. (1997). Early developmental destruction of terminals in the striatal target induces apoptosis in dopamine neurons of the substantia nigra. J. Neurosci., 17, 2030–9CrossRefGoogle ScholarPubMed
Mason, S. T., Sanberg, P. R. & Fibiger, H. C. (1978). Kainic acid lesions of the striatum dissociate amphetamine and apomorphine stereotypy: similarities to Huntington's chorea. Science, 201, 352–5CrossRefGoogle Scholar
Massieu, L., Del Rio, P. & Montiel, T. (2001). Neurotoxicity of glutamate uptake inhibition in vivo: correlation with succinate dehydrogenase activity and prevention by energy substrates. Neuroscience, 106, 669–77CrossRefGoogle ScholarPubMed
Mayer, R. A., Kindt, M. V. & Heikkila, R. E. (1986). Prevention of the nigrostriatal toxicity of 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine by inhibitors of 3,4-dihydroxyphenylethylamine transport. J. Neurochem., 47, 1073–9CrossRefGoogle ScholarPubMed
McCormack, A. L., Thiruchelvam, M., Manning-Bog, A. B., Thiffault, C., Langston, J. W., Cory-Slechta, D. A. & Di Monte, D. A. (2002). Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol. Dis., 10, 119–27CrossRefGoogle ScholarPubMed
McGeer, E. G. & McGeer, P. L. (1976). Duplication of biochemical changes of Huntington's chorea by intrastriatal injections of glutamic and kainic acids. Nature, 263, 517–19CrossRefGoogle ScholarPubMed
McGeer, E. G. & McGeer, P. L. (1978). Some factors influencing the neurotoxicity of intrastriatal injections of kainic acid. Neurochem. Res., 3, 501–17CrossRefGoogle ScholarPubMed
McGeer, E. G. & McGeer, P. L. (1982). Kainic acid: the neurotoxic breakthrough. Crit. Rev. Toxicol., 10, 1–26CrossRefGoogle ScholarPubMed
McNaught, K. S., Carrupt, P. A., Altomare, C.et al. (1998). Isoquinoline derivatives as endogenous neurotoxins in the aetiology of Parkinson's disease. Biochem. Pharmacol., 56, 921–33CrossRefGoogle ScholarPubMed
Meldrum, A., Page, K. J., Everitt, B. J. & Dunnett, S. B. (2000). Age-dependence of malonate-induced striatal toxicity. Exp. Brain Res., 134, 335–43CrossRefGoogle ScholarPubMed
Miller, D. B., O'Callaghan, J. P. (1994). Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse. J. Pharmacol. Exp. Ther., 270, 752–60Google ScholarPubMed
Miller, D. B., Ali, S. F., O'Callaghan, J. P. & Laws, S. C. (1998). The impact of gender and estrogen on striatal dopaminergic neurotoxicity. Ann. NY Acad. Sci., 844, 153–65CrossRefGoogle ScholarPubMed
Mizuno, Y., Sone, N. & Saitoh, T. (1987). Effects of 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine and 1-methyl-4- phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. J. Neurochem., 48, 1787–93CrossRefGoogle Scholar
Moratalla, R., Quinn, B., DeLanney, L. E., Irwin, I., Langston, J. W. & Graybiel, A. M. (1992). Differential vulnerability of primate caudate-putamen and striosome-matrix dopamine systems to the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl Acad. Sci., USA, 89, 3859–63CrossRefGoogle ScholarPubMed
Moser, A., Siebecker, F., Nobbe, F. & Bohme, V. (1996). Rotational behaviour and neurochemical changes in unilateral N-methyl-norsalsolinol and 6-hydroxydopamine lesioned rats. Exp. Brain Res., 112, 89–95CrossRefGoogle ScholarPubMed
Moy, S. S., Criswell, H. E. & Breese, G. R. (1997). Differential effects of bilateral dopamine depletion in neonatal and adult rats. Neurosci. Biobehav. Rev., 21, 425–35CrossRefGoogle ScholarPubMed
Moy, L. Y., Zeevalk, G. D. & Sonsalla, P. K. (2000). Role for dopamine in malonate-induced damage in vivo in striatum and in vitro in mesencephalic cultures. J. Neurochem., 74, 1656–65CrossRefGoogle ScholarPubMed
Muthane, U., Ramsay, K. A., Jiang, H.et al. (1994). Differences in nigral neuron number and sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57/bl and CD-1mice. Exp. Neurol., 126, 195–204CrossRefGoogle Scholar
Nagatsu, T. (1997). Isoquinoline neurotoxins in the brain and Parkinson's disease. Neurosci. Res., 29, 99–111CrossRefGoogle ScholarPubMed
Nagatsu, T. & Yoshida, M. (1988). An endogenous substance of the brain, tetrahydroisoquinoline, produces parkinsonism in primates with decreased dopamine, tyrosine hydroxylase and biopterin in the nigrostriatal regions. Neurosci. Lett., 87, 178–82CrossRefGoogle ScholarPubMed
Naoi, M., Maruyama, W., Dostert, P.et al. (1996). Dopamine-derived endogenous 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, N-methyl-(R)-salsolinol, induced parkinsonism in rat: biochemical, pathological and behavioral studies. Brain Res., 709, 285–95CrossRefGoogle ScholarPubMed
Nicklas, W. J., Vyas, I. & Heikkila, R. E. (1985). Inhibition of NADH-linked oxidation in brain mitochondria by MPP+, a metabolite of the neurotoxin MPTP. Life Sci., 36, 2503–8CrossRefGoogle Scholar
O'Callaghan, J. P., Miller, D. B. & Reinhard, J. F. (1990). Characterization of the origins of astrocyte response to injury using the dopaminergic neurotoxicant, 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine. Brain Res., 521, 73–80CrossRefGoogle ScholarPubMed
Offen, D., Beart, P. M., Cheung, N. S.et al. (1998). Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Proc. Natl Acad. Sci., USA, 95, 5789–94CrossRefGoogle ScholarPubMed
Okun, J. G., Lummen, P. & Brandt, U. (1999). Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH: ubiquinone oxidoreductase). J. Biol. Chem., 274, 2625–30CrossRefGoogle Scholar
Olney, J. W., Ho, O. L. & Rhee, V. (1971). Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp. Brain Res., 14, 61–76CrossRefGoogle ScholarPubMed
Ouary, S., Bizat, N., Altairac, S.et al. (2000). Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid in rats: implications for neuroprotection studies. Neuroscience, 97, 521–30CrossRefGoogle ScholarPubMed
Pajor, A. M., Gangula, R. & Yao, X. (2001). Cloning and functional characterization of a high-affinity Na(+)/dicarboxylate cotransporter from mouse brain. Am. J. Physiol. Cell Physiol., 280, C1215–23CrossRefGoogle ScholarPubMed
Pennathur, S., Jackson-Lewis, V., Przedborski, S. & Heinecke, J. W. (1999). Mass spectrometric quantification of 3-nitrotyrosine, ortho-tyrosine, and o,o′-dityrosine in brain tissue of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, a model of oxidative stress in Parkinson's disease. J. Biol. Chem., 274, 34621–8CrossRefGoogle ScholarPubMed
Perier, C., Bove, J., Vila, M. & Przedborski, S. (2003). The rotenone model of Parkinson's disease. Trends Neurosci., 26, 345–6CrossRefGoogle ScholarPubMed
Perry, T. L., Jones, K. & Hansen, S. (1988). Tetrahydroisoquinoline lacks dopaminergic nigrostriatal neurotoxicity in mice. Neurosci. Lett., 85, 101–4CrossRefGoogle ScholarPubMed
Petzinger, G. M. & Langston, J. W. (1998). The MPTP-lesioned non-human primate: a model for Parkinson's disease. In Advances in Neurodegenerative Disorders. Parkinson's Disease, ed. J. Marwah, H. Teiltelbaum, pp. 113–48. Scottsdale: Prominent Press
Portera-Cailliau, C., Price, D. L. & Martin, L. J. (1997a). Excitotoxic neuronal death in the immature brain is an apoptosis– necrosis morphological continuum. J. Comp. Neurol., 378, 70–87Google Scholar
Portera-Cailliau, C., Price, D. L. & Martin, L. J. (1997b). Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum. J. Comp. Neurol., 378, 88–1043.0.CO;2-G>CrossRefGoogle Scholar
Przedborski, S. & Dawson, T. M. (2001). The role of nitric oxide in Parkinson's disease. In Parkinson's Disease. Methods and Protocols, ed. M. M. Mouradian, pp. 113–36. New Jersey: Humana PressCrossRef
Przedborski, S. & Vila, M. (2003). The 1-methyl-4-phenyl 1-1, 2, 3, 6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson's disease. Ann. N. Y. Acad. Sci., 991, 189–98CrossRefGoogle Scholar
Przedborski, S., Jackson-Lewis, V., Popilskis, S.et al. (1991). Unilateral MPTP-induced parkinsonism in monkeys: a quantitative autoradiographic study of dopamine D1 and D2 receptors and re-uptake sites. Neurochirurgie, 37, 377–82Google ScholarPubMed
Przedborski, S., Kostic, V., Jackson-Lewis, V.et al. (1992). Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J. Neurosci., 12, 1658–67CrossRefGoogle ScholarPubMed
Przedborski, S., Levivier, M., Jiang, H.et al. (1995). Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience, 67, 631–47CrossRefGoogle ScholarPubMed
Przedborski, S., Jackson-Lewis, V., Yokoyama, R., Shibata, T., Dawson, V. L. & Dawson, T. M. (1996). Role of neuronal nitric oxide in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced dopaminergic neurotoxicity. Proc. Natl Acad. Sci., USA, 93, 4565–71CrossRefGoogle ScholarPubMed
Przedborski, S., Jackson-Lewis, V., Djaldetti, R.et al. (2000). The parkinsonian toxin MPTP: action and mechanism. Restor Neurol. Neurosc., 16, 135–42Google ScholarPubMed
Przedborski, S., Chen, Q., Vila, M.et al. (2001a). Oxidative post-translational modifications of alpha-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. J. Neurochem., 76, 637–40CrossRefGoogle Scholar
Przedborski, S., Jackson-Lewis, V., Naini, A.et al. (2001b). The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J. Neurochem., 76, 1265–74CrossRefGoogle Scholar
Przedborski, S. & Vila, M. (2001). MPTP: A review of its mechanisms of neurotoxicity. Clin. Neurosci. Res., 1, 407–18CrossRefGoogle Scholar
Przedborski, S., Vila, M. & Jackson-Lewis, V. (2003). Series Introduction: Neurodegeneration: What is it and where are we? J. Clin. Invest., 111, 3–10CrossRefGoogle Scholar
Ramsay, R. R. & Singer, T. P. (1986). Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. J. Biol. Chem., 261, 7585–7Google ScholarPubMed
Ramsay, R. R., Krueger, M. J., Youngster, S. K., Gluck, M. R., Casida, J. E. & Singer, T. P. (1991). Interaction of 1-methyl-4-phenylpyridinium ion (MPP+) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase. J. Neurochem., 56, 1184–90CrossRefGoogle ScholarPubMed
Reynolds, D. S., Carter, R. J. & Morton, A. J. (1998). Dopamine modulates the susceptibility of striatal neurons to 3-nitropropionic acid in the rat model of Huntington's disease. J. Neurosci., 18, 10116–27CrossRefGoogle ScholarPubMed
Ricaurte, G. A., Sabol, K. E. & Seiden, L. S. (1994). Functional consequences of neurotoxic amphetamine exposure. In Amphetamine and its Analogs. Psychopharmacology, Toxicology, and Abuse, ed. A. K. Cho & D. S. Segal, pp. 297–313. New York: Academic Press
Rodriguez, D. M., Abdala, P., Barroso-Chinea, P., Obeso, J. & Gonzalez-Hernandez, T. (2001). Motor behavioural changes after intracerebroventricular injection of 6-hydroxydopamine in the rat: an animal model of Parkinson's disease. Behav. Brain Res., 122, 79–92CrossRefGoogle Scholar
Rossetti, Z. L., Sotgiu, A., Sharp, D. E., Hadjiconstantinou, M. & Neff, M. (1988). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and free radicals in vitro. Biochem. Pharmacol., 37, 4573–4CrossRefGoogle ScholarPubMed
Sanberg, P. R., Pisa, M. & McGeer, E. G. (1979). Strain differences and kainic acid neurotoxicity. Brain Res., 166, 431–5CrossRefGoogle ScholarPubMed
Sanberg, P. R., Calderon, S. F., Giordano, M., Tew, J. M. & Norman, A. B. (1989). The quinolinic acid model of Huntington's disease: locomotor abnormalities. Exp. Neurol., 105, 45–53CrossRefGoogle ScholarPubMed
Sanchez-Ramos, J. R. (1993). Toxin-induced parkinsonism. In Parkinsonian Syndromes, ed. M. B. Stern & W. C. Koller, pp. 155–71. New York: Marcel Dekker, Inc
Saner, A. & Thoenen, H. (1971). Model experiments on the molecular mechanism of action of 6-hydroxydopamine. Mol. Pharmacol., 7, 147–54Google ScholarPubMed
Saporito, M. S., Brown, E. M., Miller, M. S. & Carswell, S. (1999). CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons in vivo. J. Pharmacol. Exp. Ther., 288, 421–7Google ScholarPubMed
Saporito, M. S., Thomas, B. A. & Scott, R. W. (2000). MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J. Neurochem., 75, 1200–8CrossRefGoogle ScholarPubMed
Sauer, H. & Oertel, W. H. (1994). Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience, 59, 401–15CrossRefGoogle ScholarPubMed
Schneider, J. S. & Roeltgen, D. P. (1993). Delayed matching-to-sample, object retrieval, and discrimination reversal deficits in chronic low dose MPTP-treated monkeys. Brain Res., 615, 351–4CrossRefGoogle ScholarPubMed
Schneider, J. S., Tinker, J. P., Velson, M., Menzaghi, F. & Lloyd, G. K. (1999). Nicotinic acetylcholine receptor agonist SIB-1508Y improves cognitive functioning in chronic low-dose MPTP-treated monkeys. J. Pharmacol. Exp. Ther., 290, 731–9Google ScholarPubMed
Schuler, F. & Casida, J. E. (2001). Functional coupling of PSST and ND1 subunits in NADH: ubiquinone oxidoreductase established by photoaffinity labeling. Biochim. Biophys. Act., 1506, 79–87CrossRefGoogle ScholarPubMed
Schulz, J. B., Matthews, R. T., Jenkins, B. G., Brar, P. & Beal, M. F. (1995a). Improved therapeutic window for treatment of histotoxic hypoxia with a free radical spin trap. J. Cereb. Blood Flow Metab., 15, 948–52CrossRefGoogle Scholar
Schulz, J. B., Matthews, R. T., Muqit, M. M. K., Browne, S. E. & Beal, M. F. (1995b). Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J. Neurochem., 64, 936–9CrossRefGoogle Scholar
Schulz, J. B., Henshaw, D. R., MacGarvey, U. & Beal, M. F. (1996). Involvement of oxidative stress in 3-nitropropionic acid neurotoxicity. Neurochem. Int., 29, 167–71CrossRefGoogle ScholarPubMed
Schulz, J. B., Weller, M., Matthews, R. T.et al. (1998). Extended therapeutic window for caspase inhibition and synergy with MK-801 in the treatment of cerebral histotoxic hypoxia. Cell Death Differ., 5, 847–57CrossRefGoogle ScholarPubMed
Schwarcz, R. & Coyle, J. T. (1977). Striatal lesions with kainic acid: neurochemical characteristics. Brain Res., 127, 235–49CrossRefGoogle ScholarPubMed
Schwarcz, R., Scholz, D. & Coyle, J. T. (1978). Structure-activity relations for the neurotoxicity of kainic acid derivatives and glutamate analogues. Neuropharmacology, 17, 145–51CrossRefGoogle ScholarPubMed
Schwarcz, R., Hokfelt, T., Fuxe, K., Jonsson, G., Goldstein, M. & Terenius, L. (1979). Ibotenic acid-induced neuronal degeneration: a morphological and neurochemical study. Exp. Brain Res., 37, 199–216CrossRefGoogle ScholarPubMed
Scorza, M. C., Carrau, C., Silveira, R., Zapata-Torres, G., Cassels, B. K. & Reyes-Parada, M. (1997). Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives: structure-activity relationships. Biochem. Pharmacol., 54, 1361–9CrossRefGoogle ScholarPubMed
Segal, D. S. & Kuczenski, R. (1994). Behavioral pharmacology of amphetamine. In Amphetamine and its Analogs. Psychopharmacology, Toxicology, and Abuse, ed. A. K. Cho & D. S. Segal, pp. 115–50. New York: Academic Press
Seniuk, N. A., Tatton, W. G. & Greenwood, C. E. (1990). Dose-dependent destruction of the coeruleus-cortical and nigral-striatal projections by MPTP. Brain Res., 527, 7–20CrossRefGoogle ScholarPubMed
Sherman, B. E. & Chole, R. A. (2000). Sympathectomy, which induces membranous bone remodeling, has no effect on endochondral long bone remodeling in vivo. J. Bone. Miner. Res., 15, 1354–60CrossRefGoogle ScholarPubMed
Shimizu, K., Ohtaki, K., Matsubara, K.et al. (2001). Carrier-mediated processes in blood–brain barrier penetration and neural uptake of paraquat. Brain Res., 906, 135–42CrossRefGoogle ScholarPubMed
Smith, J. G. (1988). Paraquat poisoning by skin absorption: a review. Hum. Toxicol., 7, 15–19CrossRefGoogle ScholarPubMed
Snow, B. J., Vingerhoets, F. J., Langston, J. W., Tetrud, J. W., Sossi, V. & Calne, D. B. (2000). Pattern of dopaminergic loss in the striatum of humans with MPTP induced parkinsonism. J. Neurol. Neurosurg. Psychiatr., 68, 313–16CrossRefGoogle ScholarPubMed
Sonsalla, P. K. & Heikkila, R. E. (1986). The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur. J. Pharmacol., 129, 339–45CrossRefGoogle ScholarPubMed
Sonsalla, P. K., Jochnowitz, N. D., Zeevalk, G. D., Oostveen, J. A. & Hall, E. D. (1996). Treatment of mice with methamphetamine produces cell loss in the substantia nigra. Brain Res., 738, 172–5CrossRefGoogle ScholarPubMed
Sonsalla, P. K., Manzino, L., Sinton, C. M., Liang, C. L., German, D. C. & Zeevalk, G. D. (1997). Inhibition of striatal energy metabolism produces cell loss in the ipsilateral substantia nigra. Brain Res., 773, 223–6CrossRefGoogle ScholarPubMed
Staal, R. G. & Sonsalla, P. K. (2000). Inhibition of brain vesicular monoamine transporter (VMAT2) enhances 1-methyl-4-phenylpyridinium neurotoxicity in vivo in rat striata. J. Pharmacol. Exp. Ther., 293, 336–42Google ScholarPubMed
Staal, R. G., Hogan, K. A., Liang, C. L., German, D. C. & Sonsalla, P. K. (2000). In vitro studies of striatal vesicles containing the vesicular monoamine transporter (VMAT2): rat versus mouse differences in sequestration of 1-methyl-4-phenylpyridinium. J. Pharmacol. Exp. Ther., 293, 329–35Google ScholarPubMed
Storey, E., Hyman, B. T., Jenkins, B.et al. (1992). 1-Methyl-4-phenylpyridinium produces excitotoxic lesions in rat striatum as a result of impairment of oxidative metabolism. J. Neurochem., 58, 1975–8CrossRefGoogle ScholarPubMed
Sulzer, D., Maidment, N. T. & Rayport, S. (1993). Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J. Neurochem., 60, 527–35CrossRefGoogle ScholarPubMed
Sulzer, D., Chen, T.-K., Lau, Y. Y., Kristensen, H., Rayport, S. & Ewing, A. (1995). Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J. Neurosci., 15, 4102–8CrossRefGoogle ScholarPubMed
Sun, Z., Xie, J. & Reiner, A. (2002). The differential vulnerability of striatal projection neurons in 3-nitropropionic acid-treated rats does not match that typical of adult-onset Huntington's disease. Exp. Neurol., 176, 55–65CrossRefGoogle Scholar
Takahashi, N., Miner, L. L., Sora, I.et al. (1997). VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc. Natl Acad. Sci., USA, 94, 9938–43CrossRefGoogle ScholarPubMed
Talpade, D. J., Greene, J. G., Higgins, D. S., Greenamyre, J. T.Jr. (2000). In vivo labeling of mitochondrial complex I (NADH: ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. J. Neurochem., 75, 2611–21CrossRefGoogle Scholar
Tatton, N. A. & Kish, S. J. (1997). In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience, 77, 1037–48CrossRefGoogle ScholarPubMed
Teismann, P., Tieu, K., Choi, D. K.et al. (2003). Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proc. Natl Acad. Sci., USA, 100, 5473–8CrossRefGoogle ScholarPubMed
Tetrud, J. W., Langston, J. W., Redmond, D. E., Roth, R. H.Jr., Sladek, J. R. & Angel, R. W. (1986). MPTP-induced tremor in human and non-human primates. Neurology, 36 (suppl 1), 308Google Scholar
Thiffault, C., Langston, J. W. & Di Monte, D. A. (2000). Increased striatal dopamine turnover following acute administration of rotenone to mice. Brain Res., 885, 283–8CrossRefGoogle ScholarPubMed
Thiruchelvam, M., Brockel, B. J., Richfield, E. K., Baggs, R. B. & Cory-Slechta, D. A. (2000a). Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson's disease? Brain Res., 873, 225–34CrossRefGoogle Scholar
Thiruchelvam, M., Richfield, E. K., Baggs, R. B., Tank, A. W. & Cory-Slechta, D. A. (2000b). The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson's disease. J. Neurosci., 20, 9207–14CrossRefGoogle Scholar
Thiruchelvam, M., McCormack, A., Richfield, E. K.et al. (2003). Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype. Eur. J. Neurosci., 18, 589–600CrossRefGoogle ScholarPubMed
Tieu, K., Ischiropoulos, H. & Przedborski, S. (2003). Nitric oxide and reactive oxygen species in Parkinson's disease. IUBMB Life, 55, 329–35CrossRefGoogle ScholarPubMed
Trimmer, P. A., Smith, T. S., Jung, A. B. & Bennett, J. P. Jr. (1996). Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity. Neurodegeneration, 5, 233–9CrossRefGoogle ScholarPubMed
Trulson, M. E., Cannon, M. S., Faegg, T. S. & Raese, J. D. (1985). Effects of chronic methamphetamine on the nigral-striatal dopamine system in rat brain: tyrosine hydroxylase immunochemistry and quantitative light microscopic studies. Brain Res. Bull., 15, 569–77CrossRefGoogle ScholarPubMed
Ungerstedt, U. (1968). 6-Hydroxydopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol., 5, 107–10CrossRefGoogle Scholar
Ungerstedt, U. (1971a). Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand. Supp., 367, 95–122CrossRefGoogle Scholar
Ungerstedt, U. (1971b). Postsynaptique supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal system in the rat brain. Acta Physiol. Scand., Suppl. 367, 69–93CrossRefGoogle Scholar
Ungerstedt, U. (1971c). Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand., Suppl. 367, 1–48CrossRefGoogle Scholar
Ungerstedt, U. & Arbuthnott, G. (1970). Quantitative recording of rotational behaviour in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res., 24, 485–93CrossRefGoogle Scholar
Vila, M., Jackson-Lewis, V., Vukosavic, S.et al. (2001a). Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Proc. Natl Acad. Sci., USA, 98, 2837–42CrossRefGoogle Scholar
Vila, M., Jackson Lewis, V., Guégan, C.et al. (2001b). The role of glial cells in Parkinson's disease. Curr. Opin. Neurol., 14, 483–9CrossRefGoogle Scholar
Vingerhoets, F. J., Snow, B. J., Tetrud, J. W., Langston, J. W., Schulzer, M. & Calne, D. B. (1994). Positron emission tomographic evidence for progression of human MPTP- induced dopaminergic lesions. Ann. Neurol., 36, 765–70CrossRefGoogle ScholarPubMed
Widdowson, P. S., Farnworth, M. J., Simpson, M. G. & Lock, E. A. (1996a). Influence of age on the passage of paraquat through the blood–brain barrier in rats: a distribution and pathological examination. Hum. Exp. Toxicol., 15, 231–6CrossRefGoogle Scholar
Widdowson, P. S., Farnworth, M. J., Upton, R. & Simpson, M. G. (1996b). No changes in behaviour, nigro-striatal system neurochemistry or neuronal cell death following toxic multiple oral paraquat administration to rats. Hum. Exp. Toxicol., 15, 583–91CrossRefGoogle Scholar
Wu, D. C., Jackson-Lewis, V., Vila, M.et al. (2002). Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci., 22, 1763–71CrossRefGoogle ScholarPubMed
Wu, D. C., Teismann, P., Tieu, K.et al. (2003). NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc. Natl Acad. Sci., USA, 100, 6145–50CrossRefGoogle ScholarPubMed
Wullner, U., Young, A. B., Penney, J. B. & Beal, M. F. (1994). 3-Nitropropionic acid toxicity in the striatum. J. Neurochem., 63, 1772–81CrossRefGoogle ScholarPubMed
Xia, X. G., Schmidt, N., Teismann, P., Ferger, B. & Schulz, J. B. (2001). Dopamine mediates striatal malonate toxicity via dopamine transporter-dependent generation of reactive oxygen species and D2 but not D1 receptor activation. J. Neurochem., 79, 63–70CrossRefGoogle Scholar
Yang, L., Matthews, R. T., Schulz, J. B.et al. (1998). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyride neurotoxicity is attenuated in mice overexpressing Bcl-2. J. Neurosci., 18, 8145–52CrossRefGoogle ScholarPubMed
Yoshida, M., Niwa, T. & Nagatsu, T. (1990). Parkinsonism in monkeys produced by chronic administration of an endogenous substance of the brain, tetrahydroisoquinoline: the behavioral and biochemical changes. Neurosci. Lett., 119, 109–13CrossRefGoogle ScholarPubMed
Yoshida, M., Ogawa, M., Suzuki, K. & Nagatsu, T. (1993). Parkinsonism produced by tetrahydroisoquinoline (TIQ) or the analogues. Adv. Neurol., 60, 207–11Google ScholarPubMed
Yuan, J., Callahan, B. T., McCann, U. D. & Ricaurte, G. A. (2001). Evidence against an essential role of endogenous brain dopamine in methamphetamine-induced dopaminergic neurotoxicity. J. Neurochem., 77, 1338–47CrossRefGoogle ScholarPubMed
Yuan, J., Cord, B. J., McCann, U. D., Callahan, B. T. & Ricaurte, G. A. (2002). Effect of depleting vesicular and cytoplasmic dopamine on methylenedioxymethamphetamine neurotoxicity. J. Neurochem., 80, 960–9CrossRefGoogle ScholarPubMed
Zaczek, R., Nelson, M. F. & Coyle, J. T. (1978). Effects of anaesthetics and anticonvulsants on the action of kainic acid in the rat hippocampus. Eur. J. Pharmacol., 52, 323–7CrossRefGoogle ScholarPubMed
Zaczek, R., Simonton, S. & Coyle, J. T. (1980). Local and distant neuronal degeneration following intrastriatal injection of kainic acid. J. Neuropathol. Exp. Neurol., 39, 245–64CrossRefGoogle ScholarPubMed
Zaczek, R., Culp, S. & Souza, E. B. (1991a). Interactions of [3H]amphetamine with rat brain synaptosomes. II. Active transport. J. Pharmacol. Exp. Ther., 257, 830–5Google Scholar
Zaczek, R., Culp, S., Goldberg, H., Mccann, D. J. & Souza, E. B. (1991b). Interactions of [3H]amphetamine with rat brain synaptosomes. I. Saturable sequestration. J. Pharmacol. Exp. Ther., 257, 820–9Google Scholar
Zeevalk, G. D., Derr-Yellin, E. & Nicklas, W. J. (1995). NMDA receptor involvement in toxicity to dopamine neurons in vitro caused by the succinate dehydrogenase inhibitor 3-nitropropionic acid. J. Neurochem., 64, 455–8CrossRefGoogle ScholarPubMed
Zeevalk, G. D., Manzino, L., Hoppe, J. & Sonsalla, P. (1997). In vivo vulnerability of dopamine neurons to inhibition of energy metabolism. Eur. J. Pharmacol., 320, 111–19CrossRefGoogle ScholarPubMed
Zigmond, M. J., Abercrombie, E. D., Berger, T. W., Grace, A. A. & Stricker, E. M. (1990). Compensations after lesions of the central dopaminergic neurons: some clinical and basic implications. Trends Neurosci., 13, 290–6CrossRefGoogle ScholarPubMed
Zubrycki, E. M., Emerich, D. F. & Sanberg, P. R. (1990). Sex differences in regulatory changes following quinolinic acid-induced striatal lesions. Brain Res. Bull., 25, 633–7CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Toxic animal models
    • By Serge Przedborski, Departments of Neurology and Pathology, and Center for Neurobiology and Behavior, Columbia University, NY, USA, Kim Tieu, Department of Environmental Medicine and Center for Aging and Developmental Biology, University of Rochester, NY, USA
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Toxic animal models
    • By Serge Przedborski, Departments of Neurology and Pathology, and Center for Neurobiology and Behavior, Columbia University, NY, USA, Kim Tieu, Department of Environmental Medicine and Center for Aging and Developmental Biology, University of Rochester, NY, USA
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Toxic animal models
    • By Serge Przedborski, Departments of Neurology and Pathology, and Center for Neurobiology and Behavior, Columbia University, NY, USA, Kim Tieu, Department of Environmental Medicine and Center for Aging and Developmental Biology, University of Rochester, NY, USA
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.017
Available formats
×