Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T03:06:51.277Z Has data issue: false hasContentIssue false

2 - Biological oxidants and therapeutic antioxidants

from Part I - Basic aspects of neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
John P. Crow
Affiliation:
Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas, Little Rock, AR, USA
Get access

Summary

Introduction

A book chapter represents a special type of literature overview, which offers the promise of covering topics and addressing issues which are relevant and topical but which will also stand the test of time. It is appealing to focus on topical issues, which will hopefully provide some immediate insight into problems and questions confronting investigators in the field. However, undue focus on topical issues predisposes the discussion to becoming dated prior to, or shortly after, appearing in print. Thus, the expressed purpose of this chapter will be to deal with broader concepts which will, hopefully, provide stable foundations to interpret results and permit better comprehension of both current and future topical issues relating to nitrogen oxide-derived oxidative injury relevant to neurodegenerative disease. The author's training and research background is in the chemistry and biochemistry of biologically produced oxidants, biochemical mechanisms of oxidative injury, and the pharmacology of endogenous and synthetic antioxidants. Thus, these perspectives will be emphasized, leaving the broader issues of neuroscience to the preeminent neuroscientists elsewhere in this volume. Also, because entire chapters could be devoted to many of the topics covered, citations for relevant literature reviews will be emphasized and the primary literature cited only when necessary.

Why is identification of reactive species and biomolecular targets so difficult?

For many decades, it has been understood that oxidative injury, both acute and chronic, plays a central role in numerous human disease processes and aging, yet major advances in identifying specific reactive species and/or the specific biomolecular targets responsible for cell injury and death have been few and far between.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 18 - 32
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K., Pan, L. H., Watanabe, M., Kato, T. & Itoyama, Y. (1995). Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci. Lett., 199 (2), 152–4CrossRefGoogle ScholarPubMed
Aoyama, K., Matsubara, K., Fujikawa, Y.et al. (2000). Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitrite-mediated oxidative stress in neurodegenerative diseases. Ann. Neurol., 47 (4), 524–73.0.CO;2-5>CrossRefGoogle ScholarPubMed
Beal, M. F., Ferrante, R. J., Browne, S. E.Matthews, R. T., Kowall, N. W. & Brown, R. H. Jr. (1997). Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol., 42 (4), 644–54CrossRefGoogle ScholarPubMed
Beckman, J. S. (2002). Protein tyrosine nitration and peroxynitrite. FASEB J., 16 (9), 1144CrossRefGoogle ScholarPubMed
Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A. & Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl Acad. Sci. USA, 87, 1620–4CrossRefGoogle ScholarPubMed
Beckman, J. S., Estevez, A. G.Crow, J. P. & Barbeito, L. (2001). Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci., 24 (11 Suppl), S15–20CrossRefGoogle ScholarPubMed
Briviba, K., Roussyn, I., Sharov, V. S. & Sies, H. (1996). Attenuation of oxidation and nitration reactions of peroxynitrite by selenomethionine, selenocystine and ebselen. Biochem. J., 319 (Pt 1), 13–15CrossRefGoogle ScholarPubMed
Bush, A. I. (2000). Metals and neuroscience. Curr. Opin. Chem. Biol., 4 (2), 184–91CrossRefGoogle ScholarPubMed
Cassina, P., Peluffo, H., Pehar, M.et al. (2002). Peroxynitrite triggers a phenotypic transformation in spinal cord astrocytes that induces motor neuron apoptosis. J. Neurosci. Res., 67 (1), 21–9CrossRefGoogle ScholarPubMed
Copin, J. C., Gasche, Y. & Chan, P. H. (2000). Overexpression of copper/zinc superoxide dismutase does not prevent neonatal lethality in mutant mice that lack manganese superoxide dismutase. Free Radic. Biol. Med., 28 (10), 1571–6CrossRefGoogle Scholar
Crow, J. P. (1999). Manganese and iron porphyrins catalyze peroxynitrite decomposition and simultaneously increase nitration and oxidant yield: implications for their use as peroxynitrite scavengers in vivo. Arch. Biochem. Biophys., 371 (1), 41–52CrossRefGoogle ScholarPubMed
Crow, J. P. (2000). Peroxynitrite scavenging by metalloporphyrins and thiolates. Free Radic. Biol. Med., 28 (10), 1487–94CrossRefGoogle ScholarPubMed
Crow, J. P., Ye, Y., Royall, J., Kooy, N. & Beckman, J. S. (1994). Evidence of peroxynitrite formation in vivo: detection of nitrated proteins with an anti-nitrotyrosine antibody. In Physiology of Nitric Oxide, 3rd edn
Crow, J. P., Ye, Y. Z., Strong, M., Kirk, M., Barnes, S. & Beckman, J. S. (1997). Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J. Neurochem., 69 (5), 1945–53CrossRefGoogle ScholarPubMed
Daveu, C., Servy, C., Dendane, M., Marin, P. & Ducrocq, C. (1997). Oxidation and nitration of catecholamines by nitrogen oxides derived from nitric oxide. Nitric Oxide., 1 (3), 234–43CrossRefGoogle ScholarPubMed
Denicola, A., Freeman, B. A., Trujillo, M. & Radi, R. (1996). Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch. Biochem. Biophys., 333 (1), 49–58CrossRefGoogle ScholarPubMed
Eiserich, J. P., Estevez, A. G., Bamberg, T. V.et al. (1999). Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc. Natl Acad. Sci., USA, 96 (11), 6365–70CrossRefGoogle ScholarPubMed
Ferrer-Sueta, G., Batinic-Haberle, I., Spasojevic, I., Fridovich, I. & Radi, R. (1999). Catalytic scavenging of peroxynitrite by isomeric Mn(III) N-methylpyridylporphyrins in the presence of reductants. Chem. Res. Toxicol., 12 (5), 442–9CrossRefGoogle ScholarPubMed
Forman, H. J. & Fridovich, I. (1973). Superoxide dismutase: a comparison of rate constants. Arch. Biochem. Biophys., 158 (1), 396–400CrossRefGoogle ScholarPubMed
Gardner, P. R. & Fridovich, I. (1992). Inactivation–reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J. Biol. Chem., 267 (13), 8757–63Google ScholarPubMed
Giannopoulou, E., Katsoris, P., Polytarchou, C. & Papadimitriou, E. (2002). Nitration of cytoskeletal proteins in the chicken embryo chorioallantoic membrane. Arch. Biochem. Biophys., 400 (2), 188–98CrossRefGoogle ScholarPubMed
Giasson, B. I., Duda, J. E., Murray, I. V.et al. (2000). Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 290 (5493), 985–9CrossRefGoogle ScholarPubMed
Good, P. F., Hsu, A., Werner, P., Perl, D. P. & Olanow, C. W. (1998). Protein nitration in Parkinson's disease. J. Neuropathol. Exp. Neurol., 57 (4), 338–42CrossRefGoogle ScholarPubMed
Gryglewski, R. J., Palmer, R. M. & Moncada, S. (1986). Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature, 320 (6061), 454–6CrossRefGoogle ScholarPubMed
Guentchev, M., Voigtlander, T., Haberler, C., Groschup, M. H. & Budka, H. (2000). Evidence for oxidative stress in experimental prion disease. Neurobiol. Dis., 7 (4), 270–3CrossRefGoogle ScholarPubMed
Halliwell, B. (2001). Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging, 18 (9), 685–716CrossRefGoogle ScholarPubMed
Hausladen, A. & Fridovich, I. (1994). Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J. Biol. Chem., 269 (47), 29405–8Google ScholarPubMed
Hensley, K., Maidt, M. L., Yu, Z., Sang, H., Markesbery, W. R. & Floyd, R. A. (1998). Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J. Neurosci., 18 (20), 8126–32CrossRefGoogle ScholarPubMed
Hodgson, E. K. & Fridovich, I. (1975). The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry, 14 (24), 5294–9CrossRefGoogle ScholarPubMed
Hughes, M. N. & Nicklin, H. G. (1968). The chemistry of pernitrites. Part I. Kinetics of decomposition of pernitrous acid. J. Chem. Soc.(A), 450–2CrossRefGoogle Scholar
Jacob, C., Arteel, G. E., Kanda, T., Engman, L. & Sies, H. (2000). Water-soluble organotellurium compounds: catalytic protection against peroxynitrite and release of zinc from metallothionein. Chem. Res. Toxicol., 13 (1), 3–9CrossRefGoogle ScholarPubMed
Kalisz, H. M., Erck, C., Plessmann, U. & Wehland, J. (2000). Incorporation of nitrotyrosine into alpha-tubulin by recombinant mammalian tubulin-tyrosine ligase. Biochim. Biophys. Act., 1481 (1), 131–8CrossRefGoogle ScholarPubMed
Kehrer, J. P. (2000). The Haber–Weiss reaction and mechanisms of toxicity. Toxicology, 149 (1), 43–50CrossRefGoogle ScholarPubMed
Kissner, R., Nauser, T., Bugnon, P., Lye, P. G. & Koppenol, W. H. (1997). Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem. Res. Toxicol., 10 (11), 1285–92CrossRefGoogle ScholarPubMed
Koppenol, W. H. (2001). The Haber–Weiss cycle: 70 years later. Redox. Rep., 6 (4), 229–34CrossRefGoogle ScholarPubMed
Li, Y., Huang, T. T., Carlson, E. J.et al. (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet., 11 (4), 376–81CrossRefGoogle ScholarPubMed
Liu, X., Miller, M. J., Joshi, M. S., Thomas, D. D. & Lancaster, J. R. Jr. (1998). Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc. Natl Acad. Sci., USA, 95 (5), 2175–9CrossRefGoogle ScholarPubMed
Lymar, S. V., Jiang, Q. & Hurst, J. K. (1996). Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite. Biochemistry, 35 (24), 7855–61CrossRefGoogle ScholarPubMed
McBride, A. G. & Brown, G. C. (1997). Production of peroxynitrite from nitric oxide, hydrogen peroxide and superoxide dismutase: pathological implications. Biochem. Soc. Trans., 25 (3), 409SCrossRefGoogle ScholarPubMed
McBride, A. G., Borutaite, V. & Brown, G. C. (1999). Superoxide dismutase and hydrogen peroxide cause rapid nitric oxide breakdown, peroxynitrite production and subsequent cell death. Biochim. Biophys. Act., 1454 (3), 275–88CrossRefGoogle ScholarPubMed
Mackensen, G. B., Patel, M., Sheng, H.et al. (2001). Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant. J. Neurosci., 21 (13), 4582–92CrossRefGoogle ScholarPubMed
MacMillan-Crow, L. A., Crow, J. P., Kerby, J. D., Beckman, J. S. & Thompson, J. A. (1996). Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc. Natl. Acad. Sci. USA, 93 (21), 11853–8CrossRefGoogle ScholarPubMed
MacMillan-Crow, L. A., Crow, J. P. & Thompson, J. A. (1998). Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry, 37 (6), 1613–22CrossRefGoogle ScholarPubMed
MacMillan-Crow, L. A., Greendorfer, J. S., Vickers, S. M. & Thompson, J. A. (2000). Tyrosine nitration of c-SRC tyrosine kinase in human pancreatic ductal adenocarcinoma. Arch. Biochem. Biophys., 377 (2), 350–6CrossRefGoogle ScholarPubMed
Mallozzi, C., Di Stasi, A. M. & Minetti, M. (1997). Peroxynitrite modulates tyrosine-dependent signal transduction pathway of human erythrocyte band 3. FASEB J., 11 (14), 1281–90CrossRefGoogle ScholarPubMed
Misko, T. P., Highkin, M. K., Veenhuizen, A. W.et al. (1998). Characterization of the cytoprotective action of peroxynitrite decomposition catalysts. J. Biol. Chem., 273 (25), 15646–53CrossRefGoogle ScholarPubMed
Mondoro, T. H., Shafer, B. C. & Vostal, J. G. (1997). Peroxynitrite-induced tyrosine nitration and phosphorylation in human platelets. Free Radic. Biol. Med., 22 (6), 1055–63CrossRefGoogle ScholarPubMed
Ohshima, H., Friesen, M., Brouet, I. & Bartsch, H. (1990). Nitrotyrosine as a new marker for endogenous nitrosation and nitration of proteins. Food Chem. Toxicol., 28 (9), 647–52CrossRefGoogle ScholarPubMed
Padmaja, S. & Huie, R. E. (1993). The reaction of nitric oxide with organic peroxyl radicals. Biochem. Biophys. Res. Commun., 195 (2), 539–44CrossRefGoogle ScholarPubMed
Radi, R., Beckman, J. S., Bush, K. M. & Freeman, B. A. (1991). Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem., 266 (7), 4244–50Google ScholarPubMed
Ray, J. D. (1962). Heat of isomerization of peroxynitrite to nitrate and kinetics of isomerization of peroxynitrous acid to nitric acid. J. Inorg. Nucl. Chem., 24, 1159–62CrossRefGoogle Scholar
Reaume, A. G., Elliott, J. L., Hoffman, E. K.et al. (1996). Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet., 13 (1), 43–7CrossRefGoogle ScholarPubMed
Riobo, N. A., Schopfer, F. J., Boveris, A. D., Cadenas, E. & Poderoso, J. J. (2002). The reaction of nitric oxide with 6-hydroxydopamine: implications for Parkinson's disease. Free Radic. Biol. Med., 32 (2), 115–21CrossRefGoogle ScholarPubMed
Rubanyi, G. M. & Vanhoutte, P. M. (1986). Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am. J. Physiol., 250 (5 Pt 2), H822–7Google ScholarPubMed
Salvemini, D., Riley, D. P., Lennon, P. J.et al. (1999). Protective effects of a superoxide dismutase mimetic and peroxynitrite decomposition catalysts in endotoxin-induced intestinal damage. Br. J. Pharmacol., 127 (3), 685–92CrossRefGoogle ScholarPubMed
Sies, H. & Masumoto, H. (1997). Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv. Pharmacol., 38, 229–46CrossRefGoogle ScholarPubMed
Smith, M. A., Richey Harris, P. L., Sayre, L. M., Beckman, J. S. & Perry, G. (1997). Widespread peroxynitrite-mediated damage in Alzheimer's disease. J. Neurosci., 17 (8), 2653–7CrossRefGoogle ScholarPubMed
Strong, M. J., Sopper, M. M., Crow, J. P., Strong, W. L. & Beckman, J. S. (1998). Nitration of the low molecular weight neurofilament is equivalent in sporadic amyotrophic lateral sclerosis and control cervical spinal cord. Biochem. Biophys. Res. Commun., 248 (1), 157–64CrossRefGoogle ScholarPubMed
Strong, M. J., Strong, W. L., He, B. P. & Crow, J. P. (2002). High capacity, high affinity zinc binding by neurofilament proteins inhibits zinc incorporation into Cu,Zn superoxide dismutase (SOD1): implications for SOD1 mutant toxicity in ALS. (submitted 2002)
Takakura, K., Beckman, J. S., MacMillan-Crow, L. A. & Crow, J. P. (1999). Rapid and irreversible inactivation of protein tyrosine phosphatases PTP1B, CD45, and LAR by peroxynitrite. Arch. Biochem. Biophys., 369 (2), 197–207CrossRefGoogle ScholarPubMed
Thomas, D. D., Liu, X., Kantrow, S. P. & Lancaster, J. R. Jr. (2001). The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc. Natl Acad. Sci. USA, 98 (1), 355–60CrossRefGoogle ScholarPubMed
Tohgi, H., Abe, T., Yamazaki, K., Murata, T., Ishizaki, E. & Isobe, C. (1999). Alterations of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer's disease. Neurosci. Lett., 269 (1), 52–4CrossRefGoogle ScholarPubMed
Wiedau-Pazos, M., Goto, J. J., Rabizadeh, S.et al. (1996). Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science, 271 (5248), 515–18CrossRefGoogle ScholarPubMed
Williamson, K. S., Gabbita, S. P., Mou, S.et al. (2002). The nitration product 5-nitro-gamma-tocopherol is increased in the Alzheimer brain. Nitric Oxide, 6 (2), 221–7CrossRefGoogle ScholarPubMed
Wu, A. S., Kiaei, M., Aguirre, N.et al. (2003). Iron porphyrin treatment extends survival in a transgenic animal model of amyotrophic lateral sclerosis. J. Neurochem., 85 (1), 142–50CrossRefGoogle Scholar
Zhang, Y., Zhao, W., Zhang, H. J., Domann, F. E. & Oberley, L. W. (2002). Overexpression of copper zinc superoxide dismutase suppresses human glioma cell growth. Cancer Res., 62 (4), 1205–12Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×