Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-29T03:11:05.640Z Has data issue: false hasContentIssue false

15 - Selected genetically engineered models relevant to human neurodegenerative disease

from Part I - Basic aspects of neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Donald L. Price
Affiliation:
Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
David R. Borchelt
Affiliation:
Department of Neurology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Michael K. Lee
Affiliation:
Department of Neurscience, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Philip C. Wong
Affiliation:
Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Get access

Summary

Introduction

This review on selected neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Parkinson's disease, and frontotemporal dementia with Parkinsonism (FTD-P), focuses on the ways by which genetically engineered models have clarified the mechanisms of these disorders and have identified new targets for therapy, and been used to test new treatment strategies. These neurodegenerative diseases are some of the most challenging diseases in medicine because of their general prevalence, cost, lack of mechanism-based treatments, and impact on individuals and caregivers (Lipp & Wolfer, 1998; Wong et al., 2002). The classical clinical phenotypes are, for the most part, quite distinct and reflect the dysfunction and death of specific populations of neurons. These brain lesions are characterized by the presence of intracellular or extracellular peptides/aggregates, which appear to be critical contributors to neurotoxicity, partially damaging to synapses. Genetic risk factors influence these age-associated, chronic illnesses. In rare instances, cases are inherited in Mendelian fashion (usually as autosomal dominants). Susceptibility genes, environmental risk factors, or other influences remain to be defined. Information from genetics has allowed investigators to express or to target genes in efforts to model these diseases and to study the (Armstrong et al., 1996) molecular participants critical in pathogenic pathways. This body of research is the principal topic of this review.

In this review, we emphasize the value of genetically engineered mouse models for studies of mechanisms and for experimental therapeutics, but we also briefly describe the extraordinary utility of non-mammalian genetic models.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 176 - 195
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeliovich, A., Schmitz, Y., Farinas, I.et al. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 25, 239–52CrossRefGoogle ScholarPubMed
Armstrong, R. A., Cairns, N. J., Myers, D., Smith, C. U. M., Lantos, P. L. & Rossor, M. N. (1996). A comparison of β-amyloid deposition in the medial temporal lobe in sporadic Alzheimer's disease, Down's syndrome and normal elderly brains. Neurodegeneration, 5, 35–41CrossRefGoogle ScholarPubMed
Baron, M. S., Vitek, J. L., Bakay, R. A. E.et al. (1996). Treatment of advanced Parkinson's disease by posterior GPi pallidotomy: 1-year results of a pilot study. Ann. Neurol., 40, 355–66CrossRefGoogle ScholarPubMed
Benoist, C. & Mathis, D. (1997). Cell death mediators in autoimmune diabetes – no shortage of suspects. Cell, 89, 1–3CrossRefGoogle ScholarPubMed
Bird, T., Knopman, D., VanSwieten, J.et al. (2003). Epidemiology and genetics of frontotemporal dementia/Pick's disease. Ann. Neurol., 54 Suppl 5, S29–31CrossRefGoogle ScholarPubMed
Borchelt, D. R., Guarnieri, M., Wong, P. C.et al. (1995). Superoxide dismutase 1 subunits with mutations linked to familial amyotrophic lateral sclerosis do not affect wild-type subunit function. J. Biol. Chem., 270, 3234–8CrossRefGoogle Scholar
Braak, H., Sandmann-Keil, D., Gai, W. & Braak, E. (1999). Extensive axonal Lewy neurites in Parkinson's disease: a novel pathological feature revealed by alpha-synuclein immunocytochemistry. Neurosci. Lett., 265, 67–9CrossRefGoogle ScholarPubMed
Braak, H., Rub, U., Sandmann-Keil, D.et al. (2000). Parkinson's disease: affection of brain stem nuclei controlling premotor and motor neurons of the somatomotor system. Acta Neuropathol. (Berl.), 99, 489–95CrossRefGoogle ScholarPubMed
Brown, A. (2000). Slow axonal transport: stop and go traffic in the axon. Nat. Rev. Molec. Cell Biol., 1, 153–6CrossRefGoogle ScholarPubMed
Bruijn, L. I., Becher, M. W., Lee, M. K.et al. (1997). ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron, 18, 327–8CrossRefGoogle ScholarPubMed
Bruijn, L. I., Houseweart, M. K., Kato, S.et al. (1998). Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science, 281, 1851–4CrossRefGoogle ScholarPubMed
Caceres, A. & Kosik, K. J. (1990). Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature, 343, 461–3CrossRefGoogle ScholarPubMed
Cai, H., Wang, Y., McCarthy, D.et al. (2001). BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat. Neurosci., 4, 233–4CrossRefGoogle ScholarPubMed
Cao, X. & Südhof, T. C. (2001). A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60. Science, 293, 115–20CrossRefGoogle ScholarPubMed
Chen, G., Chen, K. S., Knox, J.et al. (2000). A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer's disease. Nature, 408, 975–9CrossRefGoogle Scholar
Chen, F., Yu, G., Arawaka, S.et al. (2001). Nicastrin binds to membrane-tethered Notch. Nat. Cell Biol., 3, 751–4CrossRefGoogle ScholarPubMed
Cherny, R. A., Atwood, C. S., Xilinas, M. E.et al. (2001). Treatment with a copper–zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron, 30, 665–76CrossRefGoogle ScholarPubMed
Chung, H. M. & Struhl, G. (2001). Nicastrin is required for Presenilin-mediated transmembrane cleavage in Drosophila. Nat. Cell Biol., 3, 1129–32CrossRefGoogle ScholarPubMed
Chung, K. K., Zhang, Y., Lim, K. L.et al. (2001). Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med., 7, 1144–50CrossRefGoogle ScholarPubMed
Cleveland, D. W., Hwo, S.-Y. & Kirschner, M. W. (1977a). Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J. Mol. Biol., 116, 227–47CrossRefGoogle Scholar
Cleveland, D. W., Hwo, S.-Y. & Kirschner, M. W. (1977b). Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J. Mol. Biol., 116, 207–25CrossRefGoogle Scholar
Cleveland, D. W. & Rothstein, J. D. (2001). From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci., 2, 806–19CrossRefGoogle ScholarPubMed
Dawson, T., Mandir, A. & Lee, M. (2002). Animal models of PD: pieces of the same puzzle?Neuron, 35, 219–22CrossRefGoogle ScholarPubMed
DeMattos, R. B., Bales, K. R., Cummins, D. J., Dodart, J. C., Paul, S. M. & Holtzman, D. M. (2001). Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA, 98, 8850–5CrossRefGoogle Scholar
Duff, K., Knight, H., Refolo, L. M.et al. (2000). Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol. Dis., 7, 87–98CrossRefGoogle ScholarPubMed
Dumanchin, C., Camuzat, A., Campion, D.et al. (1998). Segregation of a missense mutation in the microtubule-associated protein tau gene with familial frontotemporal dementia and parkinsonism. Hum. Mol. Genet., 7, 1825–9CrossRefGoogle ScholarPubMed
Dunnett, S. B. & Bjorklund, A. (1999). Prospects for new restorative and neuroprotective treatments in Parkinson's Disease. Nature, 399, A32–9CrossRefGoogle ScholarPubMed
Edbauer, D., Winkler, E., Haass, C. & Steiner, H. (2002). Presenilin and nicastrin regulate each other and determine amyloid beta-peptide production via complex formation. Proc. Natl Acad. Sci., USA, 99, 8666–71CrossRefGoogle ScholarPubMed
Feany, M. B. (2000). Studying human neurodegenerative diseases in flies and worms. J. Neuropath. Exp. Neurol., 59, 847–56CrossRefGoogle ScholarPubMed
Finney, L. A. & O'Halloran, T. V. (2003). Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science, 300, 931–6CrossRefGoogle ScholarPubMed
Foix, M. C. (1921). Les lesions anatomiques de la maladie de Parkinson. Rev. Neurol., 28, 595–600Google Scholar
Forno, L. S. (1966). Pathology of parkinsonism. A preliminary report of 24 cases. J. Neurosurg., 24, 266–71Google Scholar
Forno, L. S., Langston, J. W., DeLanney, L. E., Irwin, I. & Ricaurte, G. A. (1986). Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann. Neurol., 20, 449–55CrossRefGoogle ScholarPubMed
Francis, R., McGrath, G., Zhang, J.et al. (2002). aph-1 and pen-2 are required for notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev. Cel., 3, 85–97CrossRefGoogle ScholarPubMed
George, J. M., Jin, H., Woods, W. S. & Clayton, D. F. (1995). Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron, 15, 361–72CrossRefGoogle ScholarPubMed
Giasson, B. I., Duda, J. E., Quinn, S. M., Zhang, B., Trojanowski, J. Q. & Lee, V. M. (2002). Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron, 34, 521–33CrossRefGoogle ScholarPubMed
Giasson, B. I., Forman, M. S., Higuchi, M.et al. (2003). Initiation and synergistic fibrillization of tau and alpha-synuclein. Science, 300, 636–40CrossRefGoogle ScholarPubMed
Goedert, M. (1997). The awakening of α-synuclein. Nature, 388, 232–3CrossRefGoogle ScholarPubMed
Goedert, M. (2001a). Alpha-synuclein and neurodegenerative diseases. Nature, 2, 492Google Scholar
Goedert, M. (2001b). The significance of tau and α-synuclein inclusions in neurodegenerative diseases. Curr. Opin. Genet. Dev., 11, 343–51CrossRefGoogle Scholar
Goldstein, L. S. B. & Yang, Z. (2000). Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu. Rev. Neurosci., 23, 39–71CrossRefGoogle ScholarPubMed
Gotz, J., Chen, F., Dorpe, J. & Nitsch, R. M. (2001). Formation of neurofibrillary tangles in P3011 tau transgenic mice induced by Abeta fibrils. Science, 293, 1491–5CrossRefGoogle Scholar
Greenfield, J. G. & Bosanquet, F. D. (1953). The brain-stem lesions in parkinsonism. J. Neurol. Neurosurg. Psychiatr., 16, 213–26CrossRefGoogle ScholarPubMed
Harada, A., Oguchi, K., Okabe, S. et al. (1994). Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature, 369, 488–91CrossRefGoogle ScholarPubMed
Hassler, R. (1938). Zur Pathologie der Paralysis agitans und des postencephalitischen Parkinsonismus. J. Psychol. Neurol. (Lpz.), 48, 367–476Google Scholar
Heber, S., Herms, J., Gajic, V.et al. (2000). Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J. Neurosci., 20, 7951–63CrossRefGoogle ScholarPubMed
Higuchi, M., Ishihara, T., Zhang, B.et al. (2002). Transgenic mouse model of tauopathies with glial pathology and nervous system degeneration. Neuron, 35, 433–46CrossRefGoogle ScholarPubMed
Higuchi, S., Arai, H. & Matsushita, S. (1998). Mutation in the alpha-synuclein gene and sporadic Parkinson's disease, Alzheimer's disease, and dementia with lewy bodies. Exp. Neurol., 153, 164–6CrossRefGoogle ScholarPubMed
Hong, M., Zhukareva, V., Vogelsberg-Ragaglia, V.et al. (1998). Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science, 282, 1914–17CrossRefGoogle ScholarPubMed
Hu, Y., Ye, Y. & Fortini, M. E. (2002). Nicastrin is required for gamma-secretase cleavage of the Drosophila Notch receptor. Dev. Cel., 2, 69–78CrossRefGoogle ScholarPubMed
Hutton, M., Lendon, C. L., Rizzu, P.et al. (1998). Association of missense and 5-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 393, 702–5CrossRefGoogle ScholarPubMed
Imai, Y., Soda, M. & Takahashi, R. (2000). Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem., 275, 35661–4CrossRefGoogle ScholarPubMed
Irizarry, M. C., Kim, T. W., McNamara, M.et al. (1996). Characterization of the precursor protein of the non-A beta component of senile plaques (NACP) in the human central nervous system. J. Neuropathol. Exp. Neurol., 55, 889–95CrossRefGoogle ScholarPubMed
Ishihara,, T., Hong, M., Zhang, B.et al. (1999). Age-dependent emergence and progression of a taupathy in transgenic mice overexpressing the shortest human tau isoform. Neuron, 24, 751–62CrossRefGoogle Scholar
Jan, G. G., Veldink, J. H., , d. T., I.et al. (2003). A randomized sequential trial of creatine in amyotrophic lateral sclerosis. Ann. Neurol., 53, 437–45Google Scholar
Johnson, G. V. & Hartigan, J. A. (1999). Tau protein in normal and Alzheimer's disease brain: an update. J. Alzheimers Dis., 1, 329–51CrossRefGoogle ScholarPubMed
Julien, J.-P. (2001). Amyotrophic lateral sclerosis: unfolding the toxicity of the misfolded. Cell, 104, 581–91CrossRefGoogle ScholarPubMed
Kaether, C., Lammich, S., Edbauer, D.et al. (2002). Presenilin-1 affects trafficking and processing of betaAPP and is targeted in a complex with nicastrin to the plasma membrane. J. Cell Biol., 158, 551–61CrossRefGoogle Scholar
Kamal, A., Almenar-Queralt, A., LeBlanc, J. F., Roberts, E. A. & Goldstein, L. S. (2001). Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature, 414, 643–8CrossRefGoogle ScholarPubMed
Kitada, T., Asakawa, S., Hattori, N.et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392, 605–8CrossRefGoogle Scholar
Kopan, R. & Goate, A. (2002). Aph-2/Nicastrin: an essential component of gamma-secretase and regulator of notch signaling and presenilin localization. Neuron, 33, 321–4CrossRefGoogle ScholarPubMed
Kriz, J., Gowing, G. & Julien, J. P. (2003). Efficient three-drug cocktail for disease induced by mutant superoxide dismutase. Ann. Neuro., 53, 429–36CrossRefGoogle ScholarPubMed
Kruger, R., Kuhn, W., Muller, T.et al. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat. Genet., 18, 106–8CrossRefGoogle ScholarPubMed
LaMonte, B. H., Wallace, K. E., Holloway, B. A.et al. (2002). Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron, 34, 715–27CrossRefGoogle ScholarPubMed
Laptook, A. R., Corbett, R. J. T., Arencibia-Mireles, O., Ruley, J. & Garcia, D. (1994). The effects of systemic glucose concentration on brain metabolism following repeated brain ischemia. Brain Res., 638, 78–84CrossRefGoogle ScholarPubMed
Lazarov, O., Lee, M., Peterson, D. A. & Sisodia, S. S. (2002). Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J. Neurosci., 22, 9785–93CrossRefGoogle ScholarPubMed
Lee, M. K. & Price, D. L. (2001). Advances in genetic models of Parkinson's diseases. Clin. Neurosci. Res., 1, 456–66CrossRefGoogle Scholar
Lee, M. K., Stirling, W. & Xu, Y. (2002). Human alpha-synuclein-harboring familial Parkinson's disease-linked Ala-53 → Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc. Natl Acad. Sci., USA, 99, 8968–73CrossRefGoogle ScholarPubMed
Lee, V. M. Y. & Trojanowski, J. Q. (1999). Neurodegenerative taupathies: human disease and transgenic mouse models. Neuron, 24, 507–10CrossRefGoogle Scholar
Lee, V. M., Goedert, M. & Trojanowski, J. Q. (2001). Neurodegenerative tauopathies. Annu. Rev. Neurosci., 24, 1121–59CrossRefGoogle ScholarPubMed
Leem, J. Y., Vijayan, S., Han, P.et al. (2002). Presenilin 1 is required for maturation and cell surface accumulation of nicstrin. J. Biol. Chem., 277, 19236–40CrossRefGoogle Scholar
Lewis, J., McGowan, E., Rockwood, J.et al. (2000). Neurofibrillary tangles, amyotrophy and progressive disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet., 25, 402–5CrossRefGoogle ScholarPubMed
Lewis, J., Dickson, D. W., Lin, W.-L.et al. (2001). Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science, 293, 1487–91CrossRefGoogle ScholarPubMed
Li, M., Ona, V. O., Gugan, C.et al. (2000). Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science, 288, 335–9CrossRefGoogle Scholar
Lim, G. P., Yang, F., Chu, T.et al. (2000). lbuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J. Neurosci., 20, 5709–14CrossRefGoogle Scholar
Lin, X., Cummings, C. J. & Zoghbi, H. Y. (1999). Expanding our understanding of polyglutamine diseases through mouse models. Neuron, 24, 499–502CrossRefGoogle ScholarPubMed
Lipp, H. P. & Wolfer, D. P. (1998). Genetically modified mice and cognition. Curr. Opin. Neurobiol., 8, 272–80CrossRefGoogle ScholarPubMed
Lopez-Schier, H. & St Johnston, D. (2002). Drosophila nicastrin is essential for the intramembranous cleavage of notch. Dev. Cel., 2, 79–89CrossRefGoogle ScholarPubMed
Lozano, A. M., Lang, A. E., Hutchinson, W. D. & Dostrovsky, J. O. (1998). New developments in understanding the etiology of Parkinson's Disease and in its treatments. Curr. Opin. Neurobiol., 8, 783–90CrossRefGoogle Scholar
Lozano, A. M., Lang, A. E., Hutchison, W. D. & Dostrovsky, J. O. (1998). New developments in understanding the etiology of Parkinson's disease and in its treatment. Curr. Opin. Neurobiol., 8, 783–90CrossRefGoogle ScholarPubMed
Lucking, C. B., Durr, A., Bonifati, V.et al. (2000). Association between early-onset Parkinson's disease and mutations in the parkin gene. N. Engl. J. Med., 342, 1560–7CrossRefGoogle ScholarPubMed
Luo, Y., Bolon, B. & Kahn, S. (2001). Mice deficient in BACE1, the Alzheimer's β-secretase, have normal phenotype and abolished β-amyloid generation. Nature, 4, 231–2Google ScholarPubMed
Markham, C. H. & Diamond, S. G. (1993). Clinical overview of Parkinson's disease. Clin. Neurosci., 1, 5–11Google Scholar
Maroteaux, L., Campanelli, J. T. & Scheller, R. H. (1988). Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci., 8, 2804–15CrossRefGoogle ScholarPubMed
Masliah, E., Rockenstein, E. & Veinbergs, I. (2000). Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science, 287, 1265–9CrossRefGoogle ScholarPubMed
Mercken, M., Fischer, I., Kosik, K. S. & Nixon, R. A. (1995). Three distinct axonal transport rates for tau, tubulin, and other microtubule-associated proteins: evidence for dynamic interactions of tau with microtubules in vivo. J. Neurosci., 15, 8259–67CrossRefGoogle ScholarPubMed
Munoz, D. G., Dickson, D. W., Bergeron, C., Mackenzie, I. R., Delacourte, A. & Zhukareva, V. (2003). The neuropathology and biochemistry of frontotemporal dementia. Ann. Neurol., 54 Suppl 5, S24–8CrossRefGoogle ScholarPubMed
Nicoll, J. A., Wilkinson, D., Holmes, C., Steart, P., Markham, H. & Weller, R. O. (2003). Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat. Med., 9, 448–52CrossRefGoogle ScholarPubMed
Olanow, C. W. & Tatton, W. G. (1999). Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci., 22, 123–44CrossRefGoogle ScholarPubMed
Oppenheimer, D. R. & Esiri, M. M. (1992). Diseases of the basal ganglia, cerebellum and motor neurons. In Greenfield's Neuropathology, ed. J. H. Adams & L. W. Duchen, pp. 988–1045. New York: Oxford University Press
Pasquier, F., Fukui, T., Sarazin, M.et al. (2003). Laboratory investigations and treatment in frontotemporal dementia. Ann. Neurol., 54 Suppl 5, S32–5CrossRefGoogle ScholarPubMed
Polymeropoulos, M. H. (1998). Autosomal dominant Parkinson's disease and alpha-synuclein. Ann. Neurol., 44, S63–4CrossRefGoogle ScholarPubMed
Polymeropoulos, M. H., Lavedan, C., Leroy, E.et al. (1997). Mutation in the alphasynuclein gene identified in families with Parkinson's disease. Science, 276, 2045–7CrossRefGoogle Scholar
Price, D. L., Tanzi, R. E., Borchelt, D. R. & Sisodia, S. S. (1998). Alzheimer's disease: genetic studies and transgenic models. Annu. Rev. Genet., 32, 461–93CrossRefGoogle ScholarPubMed
Probst, A., Götz, J., Wiederhold, K. H.et al. (2000). Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol., 99, 469–81CrossRefGoogle ScholarPubMed
Puls, I., Jonnakuty, C., LaMonte, B. H.et al. (2003). Mutant dynactin in motor neuron disease. Nat. Genet., 33, 455–6CrossRefGoogle ScholarPubMed
Rothstein, J. D. (2003). Of mice and men: reconciling preclinical ALS mouse studies and human clinical trials. Ann. Neurol., 53, 423–6CrossRefGoogle ScholarPubMed
Schenk, D., Barbour, R., Dunn, W.et al. (1999). Immunization with amyloid-beta attenuates Alzheimer disease-like pathology in the PDAPP mouse. Nature, 400, 173–7CrossRefGoogle ScholarPubMed
Selkoe, D. J. (2001a). Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev., 81, 741–66CrossRefGoogle Scholar
Selkoe, D. J. (2001b). Clearing the brain's amyloid cobwebs. Neuron, 32, 177–80CrossRefGoogle Scholar
Sheng, J. G., Price, D. L. & Koliatsos, V. E. (2002). Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of Abeta amyloidosis. J. Neurosci., 22, 9794–9CrossRefGoogle Scholar
Sherman, M. Y. & Goldberg, A. L. (2001). Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron, 29, 15–32CrossRefGoogle ScholarPubMed
Sherrington, R., Rogaev, E. I., Liang, Y.et al. (1995). Cloning of gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature, 375, 754–60CrossRefGoogle ScholarPubMed
Sima, A. A. F., Defendini, R., Keohane, C.et al. (1996). The neuropathology of chromosome 17-linked dementia. Ann. Neurol., 39, 734–43CrossRefGoogle ScholarPubMed
Sisodia, S. S. & George-Hyslop, P. H. (2002). gamma-Secretase, Notch, Abeta and Alzheimer's disease: where do the presenilins fit in?Nat. Rev. Neurosci., 3, 281–90CrossRefGoogle ScholarPubMed
Spillantini, M. G., Schmidt, V. M. L., Trojanowski, J. Q., Jakes, R. & Goedert, M. (1997). Alpha-synuclein in lewy bodies [letter]. 839–40
Spillantini, M. G., Murrell, J. R., Goedert, M., Farlow, M. R., Klug, A. & Ghetti, B. (1998). Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl Acad. Sci., USA, 95, 7737–41CrossRefGoogle ScholarPubMed
Spittaels, K., Haute, C., Dorpe, J.et al. (1999). Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am. J. Pathol., 155, 2153–65CrossRefGoogle ScholarPubMed
Subramaniam, J. R., Lyons, W. E. & Liu, J. (2002). Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading. Nat. Neurosci., 5, 301–7CrossRefGoogle ScholarPubMed
Südhof, T. C. (1995). The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature, 375, 645–53CrossRefGoogle ScholarPubMed
Takei, Y., Kondo, S., Harada, A., Inomata, S., Noda, T. & Hirokawa, N. (1997). Delayed development of nervous system in mice homozygous for disrupted microtubule-associated protein 1B (MAP1B) gene. J. Cell Biol., 137, 1615–26CrossRefGoogle ScholarPubMed
Takei, Y., Teng, J., Harada, A. & Hirokawa, N. (2000). Defects in axonal elongation and neuronal migration in mice with disrupted tau and map 1b genes. J. Cell Biol., 150, 989–1000CrossRefGoogle Scholar
Taniguchi, Y., Karlstrom, H., Lundkvist, J.et al. (2002). Notch receptor cleavage depends on but is not directly executed by presenilins. Proc. Natl Acad. Sci., USA, 99, 4014–19CrossRefGoogle Scholar
Tanzi, R. E. & Bertram, L. (2001). New frontiers in Alzheimer's disease genetics. Neuron, 32, 181–4CrossRefGoogle ScholarPubMed
Terada, S. & Hirokawa, K. (2000). Moving on to the cargo problem of microtubule-dependent motors in neurons. Curr. Opin. Neurobiol., 10, 566–73CrossRefGoogle ScholarPubMed
Trojanowski, J. Q. (2002). Tauists, baptists, syners, apostates, and new data. Ann. Neurol., 52, 263–5CrossRefGoogle ScholarPubMed
Ueda, K., Fukushima, H., Masliah, E.et al. (1993). Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl Acad. Sci. USA, 90, 11282–6CrossRefGoogle ScholarPubMed
Putten, H., Wiederhold, K. H., Probst, A., et al. (2000). Neuropathology in mice expressing human alpha-synuclein. J. Neurosci., 20, 6021–9CrossRefGoogle ScholarPubMed
Vassar, R., Bennett, B. D., Babu-Khan, S.et al. (1999). β-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 286, 735–41CrossRefGoogle ScholarPubMed
Vassar, R. & Citron, M. (2000). Aβ-generating enzymes: recent advances in β- and γ-secretase research. Neuron, 27, 419–22CrossRefGoogle ScholarPubMed
Vázques, J., Fernández-Shaw, C., Marina, A., Haas, C., Cacabelos, R. & Valdivieso, F. (1996). Antibodies to human brain spectrin in Alzheimer's disease. J. Neuroimmunol., 68, 39–44Google Scholar
Wang, J., Xu, G. & Borchelt, D. R. (2002). High molecular weight complexes of mutant superoxide dismutase 1: age-dependent and tissue-specific accumulation. Neurobiol. Dis., 9, 139–48CrossRefGoogle ScholarPubMed
Warrick, J. M., Paulson, H. L., Gray-Board, Y. E.et al. (1998). Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell, 93, 939–49CrossRefGoogle ScholarPubMed
Warrick, J. M., Chan, H., Gray-Board, Y. E., Chai, Y., Paulson, H. L. & Bonini, N. M. (1999). Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet., 23, 425–8CrossRefGoogle ScholarPubMed
Weggen, S., Eriksen, J. L., Das, P.et al. (2001). A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature, 414, 212–16CrossRefGoogle ScholarPubMed
Wichmann, T. & DeLong, M. R. (1996). Functional and pathophysiological models of the basal ganglia. Curr. Opin. Neurobiol., 6, 752–8CrossRefGoogle ScholarPubMed
Wittmann, C. W., Wszolek, M. F., Shulman, J. M.et al. (2001). Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science, 293, 711–14CrossRefGoogle ScholarPubMed
Wong, P. C., Pardo, C. A., Borchelt, D. R.et al. (1995). An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron, 14, 1105–16CrossRefGoogle ScholarPubMed
Wong, P. C., Zheng, H., Chen, H.et al. (1997). Presenilin 1 is required for Notch 1 and DII1 expression in the paraxial mesoderm. Nature, 387, 288–92CrossRefGoogle ScholarPubMed
Wong, P. C., Rothstein, J. D. & Price, D. L. (1998). The genetic and molecular mechanisms of motor neuron disease. Curr. Opin. Neurobiol., 8, 791–9CrossRefGoogle ScholarPubMed
Wong, P. C., Waggoner, D., Subramaniam, J. R.et al. (2000). Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl Acad. Sci., USA, 97, 2886–91CrossRefGoogle ScholarPubMed
Wong, P. C., Price, D. L. & Cai, H. (2001). The brain's susceptibility to amyloid plaques. Science, 293, 1434–5CrossRefGoogle ScholarPubMed
Wong, P. C., Cai, H., Borchelt, D. R. & Price, D. L. (2002). Genetically engineered mouse models of neurodegenerative diseases. Nat. Neurosci., 5, 633–9CrossRefGoogle ScholarPubMed
Yu, G., Nishimura, M., Arawaka, S.et al. (2000). Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature, 407, 48–54Google ScholarPubMed
Zhang, Y., Gao, J., Chung, K. K.et al. (2000). Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptuc vesicle-associated protein, CDCrel-1. Proc. Natl Acad. Sci., USA, 97, 13354–9CrossRefGoogle ScholarPubMed
Zheng, H., Jiang, M.-H., Trumbauer, M. E.et al. (1995). β-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell, 81, 525–31CrossRefGoogle ScholarPubMed
Zhu, S., Stavrovskaya, I. G., Drozda, M.et al. (2002). Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature, 417, 74–8CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×