Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T03:08:01.526Z Has data issue: false hasContentIssue false

7 - Apoptosis in neurodegenerative diseases

from Part I - Basic aspects of neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Jörg B. Schulz
Affiliation:
Department of Neurodegeneration and Restorative Research, University of Göttingen, Germany
Get access

Summary

Introduction

Although reports on the morphological characteristics of apoptosis in neurodegenerative diseases remain controversial, accumulating evidence suggests that the molecular and biochemical pathways of apoptosis are involved in neuronal death of various neurodegenerative disorders and in related cellular and animal models. This includes stroke, head trauma, Huntington's (HD), Parkinson's (PD), Alzheimer's disease (AD and amyotrophic lateral sclerosis (ALS)). This evidence includes the activation of the mitogen activated protein (MAP) kinase pathway, the induction of Bax, prostate apoptosis response-4 (Par-4) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), evidence of aberrant activation of the cell cycle machinery, and the activation of caspases. Caspases are the mammalian cell-death-effector proteins. They may have an important role in acute and chronic neurodegenerative diseases. They execute cell death but may also be linked to the initiation of chronic neurodegenerative diseases. Peptide or protein inhibitors of caspases protect neurons in vitro or in animal models of neurological disorders. Although preclinical results are promising, clinical studies have not been performed because of the lack of synthetic caspase inhibitors that cross the blood–brain barrier. Such agents are a major focus in current programs of drug development and will hopefully become available soon. However, in some cell culture and animal models caspase inhibitors block cell death but may result in survival of a dysfunctional neuron. In contrast, therapeutic interference with the signaling phase of apoptosis, e.g. inhibition of the MAP kinase pathway, or the combination of caspase inhibitors with neurotrophins may provide morphological and functional protection.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 80 - 93
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A. J., Su, J. H. & Cotman, C. W. (1996). DNA damage and apoptosis in Alzheimer's disease: colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J. Neurosci., 16, 1710–19CrossRefGoogle ScholarPubMed
Andringa, G. & Cools, A. R. (2000). The neuroprotective effects of CGP 3466B in the best in vivo model of Parkinson's disease, the bilaterally MPTP-treated rhesus monkey. J. Neural Transm. Suppl., 215–25Google ScholarPubMed
Andringa, G., Oosten, R. V., Unger, W.et al. (2000). Systemic administration of the propargylamine CGP 3466B prevents behavioural and morphological deficits in rats with 6-hydroxydopamine-induced lesions in the substantia nigra. Eur. J. Neurosci., 12, 3033–43CrossRefGoogle ScholarPubMed
Anglade, P., Vyas, S., Javoy-Agid, F.et al. (1997). Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol., 12, 25–31Google ScholarPubMed
Banati, R. B., Daniel, S. E. & Blunt, S. B. (1998). Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson's disease. Mov. Disord., 13, 221–7CrossRefGoogle ScholarPubMed
Bilsland, J., Roy, S., Xanthoudakis, S.et al. (2002). Caspase inhibitors attenuate 1-methyl-4-phenylpyridinium toxicity in primary cultures of mesencephalic dopaminergic neurons. J. Neurosci., 22, 2637–49CrossRefGoogle ScholarPubMed
Bratton, S. B., Walker, G., Srinivasula, S. M.et al. (2001). Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J, 20, 998–1009CrossRefGoogle ScholarPubMed
Cande, C., Cohen, I., Daugas, E.et al. (2002). Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie, 84, 215–22CrossRefGoogle ScholarPubMed
Carlile, G. W., Chalmers-Redman, R. M., Tatton, N. A.et al. (2000). Reduced apoptosis after nerve growth factor and serum withdrawal: conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer. Mol. Pharmacol., 57, 2–12Google ScholarPubMed
Cassarino, D. S., Parks, J. K., Parker, W. D. Jr. & Bennett, J. P. Jr. (1999). The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim. Biophys. Act., 1453, 49–62CrossRefGoogle ScholarPubMed
Chen, M., Ona, V. O., Li, M.et al. (2000). Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med., 6, 797–801Google Scholar
Choi, W. S., Yoon, S. Y., Oh, T. H.et al. (1999). Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP+-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. J. Neurosci. Res., 57, 86–943.0.CO;2-E>CrossRefGoogle ScholarPubMed
Clark, R. S., Kochanek, P. M., Chen, M.et al. (1999). Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J., 13, 813–21CrossRefGoogle ScholarPubMed
Cornet, S., Spinnewyn, B., Delaflotte, S., et al. (2004). Lack of evidence of direct mitochondrial involvement in the neuroprotective effect of minocycline. Eur. J. Pharmacol., 505, 111–19CrossRefGoogle ScholarPubMed
D'Souza, S. D., Bonetti, B., Balasingam, V.et al. (1996). Multiple sclerosis: Fas signaling in oligodendrocyte cell death. J. Exp. Med., 184, 2361–70CrossRefGoogle ScholarPubMed
Deckwerth, T. L., Elliott, J. L., Knudson, C. M., Johnson, E. M., Snider, W. D. & Korsmeyer, S. J. (1996). Bax is required for neuronal death after trophic factor deprivation and during development. Neuron, 17, 401–11CrossRefGoogle ScholarPubMed
Deveraux, Q. L. & Reed, J. C. (1999). IAP family proteins – suppressors of apoptosis. Genes Dev., 13, 239–52CrossRefGoogle Scholar
Deveraux, Q. L., Roy, N., Stennicke, H. R.et al. (1998). IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J., 17, 2215–23CrossRefGoogle ScholarPubMed
Diguet, E., Fernagut, P. O., Wel, X.et al. (2004). Deleterious effects of minocycline in animal models of Parkinson's disease and Huntington's disease. Eur. J. Neurosci., 19, 3266–76CrossRefGoogle ScholarPubMed
Dodel, R. C., Du, Y., Bales, K. R., Ling, Z. D., Carvey, P. M. & Paul, S. M. (1998). Peptide inhibitors of caspase-3-like proteases attenuate 1-methyl-4-phenylpyridinum-induced toxicity of cultured fetal rat mesencephalic dopamine neurons. Neuroscience, 86, 701–7CrossRefGoogle ScholarPubMed
Dowling, P., Shang, G., Raval, S., Menonna, J., Cook, S. & Husar, W. (1996). Involvement of the CD95 (APO-1/Fas) receptor/ligand system in multiple sclerosis brain. J. Exp. Med., 184, 1513–18CrossRefGoogle ScholarPubMed
Du, Y., Dodel, R. C., Bales, K. R., Jemmerson, R., Hamilton-Byrd, E. & Paul, S. M. (1997). Involvement of caspase-3-like cysteine protease in 1-methyl-4-phenylpyridinium-mediated apoptosis of cultured cerebellar granule neurons. J. Neurochem., 69, 1382–8CrossRefGoogle ScholarPubMed
Du, Y., Ma, Z., Lin, S.et al. (2001). Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc. Natl Acad. Sci., USA, 98, 14669–74CrossRefGoogle ScholarPubMed
Duan, W., Zhang, Z., Gash, D. M. & Mattson, M. P. (1999). Participation of prostate apoptosis response-4 in degeneration of dopaminergic neurons in models of Parkinson's disease. Ann. Neurol., 46, 587–973.0.CO;2-M>CrossRefGoogle ScholarPubMed
Eberhardt, O., Coelln, R. V., Kugler, S.et al. (2000). Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J. Neurosci., 20, 9126–34CrossRefGoogle ScholarPubMed
Endres, M., Namura, S., Shimizu-Sasamata, M.et al. (1998). Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J. Cereb. Blood Flow Metab., 18, 238–47CrossRefGoogle ScholarPubMed
Fink, K., Zhu, J., Namura, S.et al. (1998). Prolonged therapuetic window for ischemic brain damage caused by delayed caspase activation. J. Cereb. Blood. Flow Metab., 18, 1071–6CrossRefGoogle Scholar
Fink, K. B., Andrews, L. J., Butler, W. E.et al. (1999). Reduction of post-traumatic brain injury and free radical production by inhibition of the caspase-1 cascade. Neuroscience, 94, 1213–18CrossRefGoogle ScholarPubMed
Fischer, U., Janicke, R. U. & Schulze-Osthoff, K. (2003). Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ., 10, 76–100CrossRefGoogle ScholarPubMed
Friedlander, R. M., Brown, R. H., Gagliardini, V., Wang, J. & Yuan, J. (1997). Inhibition of ICE slows ALS in mice [letter]. Nature, 388, 31CrossRefGoogle Scholar
Fukuhara, Y., Takeshima, T., Kashiwaya, Y., Shimoda, K., Ishitani, R. & Nakashima, K. (2001). GAPDH knockdown rescues mesencephalic dopaminergic neurons from MPP+ -induced apoptosis. NeuroReport, 12, 2049–52CrossRefGoogle ScholarPubMed
Gerhardt, E., Kügler, S., Leist, M.et al. (2001). Cascade of caspase-activation in potassium-deprived cerebellar granule neurons: targets for treatment with peptide and protein inhibitors of apoptosis. Mol. Cell Neurosci., 17, 717–31CrossRefGoogle ScholarPubMed
Gervais, F. G., Singaraja, R., Xanthoudakis, S.et al. (2002). Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat. Cell Biol., 4, 95–105CrossRefGoogle Scholar
Gervais, F. G., Xu, D., Robertson, G. S.et al. (1999). Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell, 97, 395–406CrossRefGoogle ScholarPubMed
Ghadge, G. D., Lee, J. P., Bindokas, V. P.et al. (1997). Mutant superoxide dismutase-1-linked familial amyotrophic lateral sclerosis: molecular mechanisms of neuronal death and protection. J. Neurosci., 17, 8756–66CrossRefGoogle ScholarPubMed
Goldberg, Y. P., Nicholson, D. W., Rasper, D. M.et al. (1996). Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat. Genet., 13, 442–9CrossRefGoogle ScholarPubMed
Gomez, C., Reiriz, J., Pique, M., Gil, J., Ferrer, I. & Ambrosio, S. (2001). Low concentrations of 1-methyl-4-phenylpyridinium ion induce caspase-mediated apoptosis in human SH-SY5Y neuroblastoma cells. J. Neurosci. Res., 63, 421–83.0.CO;2-4>CrossRefGoogle ScholarPubMed
Guegan, C., Vila, M., Rosoklija, G., Hays, A. P. & Przedborski, S. (2001). Recruitment of the mitochondrial-dependent apoptotic pathway in amyotrophic lateral sclerosis. J. Neurosci., 21, 6569–76CrossRefGoogle ScholarPubMed
Guegan, C., Vila, M., Teissman, P.et al. (2002). Instrumental activation of bid by caspase-1 in a transgenic mouse model of ALS. Mol. Cell Neurosci., 20, 553–62CrossRefGoogle Scholar
Guo, N., Krutzsch, H. C., Inman, J. K. & Roberts, D. D. (1997). Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res., 57, 1735–42Google ScholarPubMed
Hara, A., Yoshimi, N., Hirose, Y., Ino, N., Tanaka, T. & Mori, H. (1995). DNA fragmentation in granular cells of human cerebellum following global ischemia. Brain Res., 697, 247–50CrossRefGoogle ScholarPubMed
Hara, H., Fink, K., Endres, M.et al. (1997a). Attenuation of transient focal cerebral ischemia injury in transgenic mice expressing a mutant ICE inhibitory protein. J. Cereb. Blood Flow Metab., 17, 370–5CrossRefGoogle Scholar
Hara, H., Friedlander, R. M., Gagliardini, V.et al. (1997b). Inhibition of interleukin 1β converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc. Natl Acad. Sci., USA, 94, 2007–12CrossRefGoogle Scholar
Hartmann, A., Hunot, S., Michel, P. P.et al. (2000). Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc. Natl Acad. Sci., USA, 97, 2875–80CrossRefGoogle ScholarPubMed
Hartmann, A., Michel, P. P., Troadec, J. D.et al. (2001a). Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson's disease?J. Neurochem., 76, 1785–93CrossRefGoogle Scholar
Hartmann, A., Troadec, J. D., Hunot, S.et al. (2001b). Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson's disease, but pathway inhibition results in neuronal necrosis. J. Neurosci., 21, 2247–55CrossRefGoogle Scholar
Hegde, R., Srinivasula, S. M., Zhang, Z.et al. (2002). Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem., 277, 432–8CrossRefGoogle ScholarPubMed
Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature, 407, 770–6CrossRefGoogle Scholar
Himi, T., Ishizaki, Y. & Murota, S. (1998). A caspase inhibitor blocks ischaemia-induced delayed neuronal death in the gerbil. Eur. J. Neurosci., 10, 777–81CrossRefGoogle ScholarPubMed
Hisahara, S., Araki, T., Sugiyama, F.et al. (2000). Targeted expression of baculovirus p35 caspase inhibitor in oligodendrocytes protects mice against autoimmune-mediated demyelination. EMBO J., 19, 341–8CrossRefGoogle ScholarPubMed
Ishitani, R. & Chuang, D. M. (1996). Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons. Proc. Natl Acad. Sci., USA, 93, 9937–41CrossRefGoogle ScholarPubMed
Ishitani, R., Kimura, M., Sunaga, K., Katsube, N., Tanaka, M. & Chuang, D. M. (1996a). An antisense oligodeoxynucleotide to glyceraldehyde-3-phosphate dehydrogenase blocks age-induced apoptosis of mature cerebrocortical neurons in culture. J. Pharmacol. Exp. Ther., 278, 447–54Google Scholar
Ishitani, R., Sunaga, K., Hirano, A., Saunders, P., Katsube, N. & Chuang, D. M. (1996b). Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J. Neurochem., 66, 928–35CrossRefGoogle Scholar
Ishitani, R., Sunaga, K., Tanaka, M., Aishita, H. & Chuang, D. M. (1997). Overexpression of glyceraldehyde-3-phosphate dehydrogenase is involved in low K+-induced apoptosis but not necrosis of cultured cerebellar granule cells. Mol. Pharmacol., 51, 542–50CrossRefGoogle Scholar
Jones, J. M., Datla, P., Srinivasula, S. M.et al. (2003). Loss of Ori mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature, 425, 721–7CrossRefGoogle Scholar
Kang, S. J., Wang, S., Hara, H . et al. (2000). Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol., 149, 613–22CrossRefGoogle ScholarPubMed
Kermer, P., Klöcker, N., Labes, M. & Bähr, M. (1998). Inhibition of CPP32-like proteases rescues axotomized retinal ganglion cells from secondary cell death in vivo. J. Neurosci., 15, 4656–62CrossRefGoogle Scholar
Klein, J. A., Longo-Guess, C. M., Rossmann, M. P.et al. (2002). The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature, 419, 367–74CrossRefGoogle ScholarPubMed
Klevenyi, P., Andreassen, O., Ferrante, R. J., Schleicher, J. R., Friedlander, R. M.Jr. & Beal, M. F. (1999). Transgenic mice expressing a dominant negative mutant interleukin-1beta converting enzyme show resistance to MPTP neurotoxicity. NeuroReport, 10, 635–8CrossRefGoogle ScholarPubMed
Kluck, R. M., Esposti, M. D., Perkins, G.et al. (1999). The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J. Cell Biol., 147, 809–22CrossRefGoogle Scholar
Kosel, S., Egensperger, R., Voneitzen, U., Mehraein, P. & Graeber, M. B. (1997). On the question of apoptosis in the parkinsonian substantia nigra. Acta Neuropathol., 93, 105–8Google ScholarPubMed
Kostic, V., Jackson-Lewis, V., Bilbao, F., Dubois-Dauphin, M. & Przedborski, S. (1997). Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science, 277, 559–62CrossRefGoogle Scholar
Kragten, E., Lalande, I., Zimmermann, K.et al. (1998). Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(–)-deprenyl. J. Biol. Chem., 273, 5821–8CrossRefGoogle Scholar
Krajewska, M., Wang, H.-G., Krajewski, S.et al. (1997). Immunohistochemical analysis of in vivo patterns of expression of CPP32 (Caspase-3), a cell death protease. Cancer Res., 57, 1605–13Google Scholar
Kroemer, G. (1997). Mitochondrial implication in apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ., 4, 443–56CrossRefGoogle ScholarPubMed
Kugler, S., Straten, G., Kreppel, F., Isenmann, S., Liston, P. & Bahr, M. (2000). The X-linked inhibitor of apoptosis (XIAP) prevents cell death in axotomized CNS neurons in vivo. Cell Death Differ., 7, 815–24CrossRefGoogle ScholarPubMed
Leist, M. & Jaattela, M. (2001). Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol., 2, 589–98CrossRefGoogle Scholar
Li, P., Nijhawan, D., Budihardjo, I.et al. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91, 479–89CrossRefGoogle ScholarPubMed
Li, M., Ona, V. O., Guegan, C.et al. (2000). Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science, 288, 335–9CrossRefGoogle Scholar
Lipton, S. A. & Bossy-Wetzel, E. (2002). Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell, 111, 147–50CrossRefGoogle ScholarPubMed
Loddick, S. A. & Rothwell, N. J. (1996). Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab., 16, 932–40CrossRefGoogle ScholarPubMed
Loddick, S. A., MacKenzie, A. & Rothwell, N. J. (1996). An ICE inhibitor, z-VAD-DCB attenuates ischaemic brain damage in the rat. NeuroReport, 7, 1465–8CrossRefGoogle ScholarPubMed
Ma, J., Endres, M. & Moskowitz, M. A. (1998). Synergistic effects of caspase inhibitors and MK-801 in brain injury after transient focal cerebral ischemia in mice. Br. J. Pharmacol., 124, 756–62CrossRefGoogle ScholarPubMed
MacManus, J. P., Buchan, A. M., Hill, I. E., Rasquinha, I. & Preston, E. (1993). Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci. Lett., 164, 89–92CrossRefGoogle ScholarPubMed
MacManus, J. P., Hill, I. E., Huang, Z. G., Rasquinha, I., Xue, D. & Buchan, A. M. (1994). DNA damage consistent with apoptosis in transient focal ischaemic neocortex. NeuroReport, 5, 493–6CrossRefGoogle ScholarPubMed
Martin, L. J. (1999). Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J. Neuropathol. Exp. Neurol., 58, 459–71CrossRefGoogle ScholarPubMed
Martinou, J. C. & Green, D. R. (2001). Breaking the mitochondrial barrier. Nat. Rev. Mol. Cell. Biol., 2, 63–7CrossRefGoogle ScholarPubMed
Matsushita, K., Wu, Y., Qiu, J.et al. (2000). Fas receptor and neuronal cell death after spinal cord ischemia. J. Neurosci., 20, 6879–87CrossRefGoogle ScholarPubMed
Mattson, M. P. (2000). Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol., 1, 120–9CrossRefGoogle ScholarPubMed
McGeer, P. L., Itagaki, S., Akiyama, H. & McGeer, E. G. (1988). Rate of cell death in parkinsonism indicates active neuropathological process. Ann. Neurol., 24, 574–6CrossRefGoogle ScholarPubMed
Mochizuki, H., Goto, K., Mori, H. & Mizuno, Y. (1996). Histochemical detection of apoptosis in Parkinson's disease. J. Neurol. Sci., 137, 120–3CrossRefGoogle ScholarPubMed
Mochizuki, H., Hayakawa, H., Migita, M.et al. (2001). An AAV-derived Apaf-1 dominant negative inhibitor prevents MPTP toxicity as antiapoptotic gene therapy for Parkinson's disease. Proc. Natl Acad. Sci., USA, 98, 10918–23CrossRefGoogle ScholarPubMed
Morita-Fujimura, Y., Fujimura, M., Kawase, M., Murakami, K., Kim, G. W. & Chan, P. H. (1999). Inhibition of interleukin-1 beta converting enzyme family proteases (caspases) reduces cold injury-induced brain trauma and DNA fragmentation in mice. J. Cereb. Blood Flow Metab., 19, 634–42CrossRefGoogle ScholarPubMed
Namura, S., Zhu, J., Fink, K.et al. (1998). Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J. Neurosci., 18, 3659–68CrossRefGoogle ScholarPubMed
Nguyen, M. D., Julien, J. P. & Rivest, S. (2001). Induction of proinflammatory molecules in mice with amyotrophic lateral sclerosis: no requirement for proapoptotic interleukin-1beta in neurodegeneration. Ann. Neurol., 50, 630–9CrossRefGoogle ScholarPubMed
Nicholson, D. W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ., 6, 1028–42CrossRefGoogle ScholarPubMed
Okada, H., Suh, W. K., Jin, J.et al. (2002). Generation and characterization of Smac/DIABLO-deficient mice. Mol. Cell Biol., 22, 3509–17CrossRefGoogle ScholarPubMed
Ona, V. O., Li, M., Vonsattel, J. P.et al. (1999). Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature, 399, 263–7CrossRefGoogle Scholar
Ozawa, K., Suchanek, G., Breitschopf, H.et al. (1994). Patterns of oligodendroglia pathology in multiple sclerosis. Brain, 117, 1311–22CrossRefGoogle ScholarPubMed
Portera-Cailliau, C., Hedreen, J. C., Price, D. L. & Koliatsos, V. E. (1995). Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neurosci., 15, 3775–87CrossRefGoogle ScholarPubMed
Putcha, G. V., Moulder, K. L., Golden, J. P.et al. (2001). Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron, 29, 615–28CrossRefGoogle ScholarPubMed
Putcha, G. V., Harris, C. A., Moulder, K. L., Easton, R. M., Thompson, C. B. & Johnson, E. M. Jr. (2002). Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice. J. Cell Biol., 157, 441–53CrossRefGoogle ScholarPubMed
Rano, T. A., Timkey, T., Peterson, E. P.et al. (1997). A combinatorial approach for determining protease specificities: application to interleukin-1beta converting enzyme (ICE). Chem. Biol., 4, 149–55CrossRefGoogle Scholar
Raoul, C., Henderson, C. E. & Pettmann, B. (1999). Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J. Cell Biol., 147, 1049–62CrossRefGoogle ScholarPubMed
Raoul, C., Estevez, A. G., Nishimune, H.et al. (2002). Motoneuron death triggered by a specific pathway downstream of Fas potentiation by ALS-linked SOD1 mutations. Neuron, 35, 1067–83CrossRefGoogle ScholarPubMed
Rathke-Hartlieb, S., Schlomann, U., Heirnann, P., Meisler, M. H., Jackusch, H. & Bartsch, J. W. (2002). Progressive loss of striatal neurons causes motor dysfunction in MND2 mutant mice and is not prevented by Bcl-2. Exp. Neurol., 175, 87–97CrossRefGoogle Scholar
Ravagnan, L., Gurbuxani, S., Susin, S. A.et al. (2001). Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat. Cell Biol., 3, 839–43CrossRefGoogle ScholarPubMed
Robertson, G. S., Crocker, S. J., Nicholson, D. W. & Schulz, J. B. (2000). Neuroprotection by the inhibition of apoptosis. Brain Pathol, 10, 283–92CrossRefGoogle ScholarPubMed
Saito, M., Korsmeyer, S. J. & Schlesinger, P. H. (2000). BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat. Cell Biol., 2, 553–5CrossRefGoogle ScholarPubMed
Sanchez, I., Xu, C. J., Juo, P., Kakizaka, A., Blenis, J. & Yuan, J. (1999). Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron, 22, 623–33CrossRefGoogle ScholarPubMed
Sanna, M. G., Duckett, C. S., Richter, B. W., Thompson, C. B. & Ulevitch, R. J. (1998). Selective activation of JNK1 is necessary for the anti-apoptotic activity of hILP. Proc. Natl Acad. Sci., USA, 95, 6015–20CrossRefGoogle ScholarPubMed
Sanna, M. G., da Silva Correia, J., Ducrey, O.et al. (2002). IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol. Cell Biol., 22, 1754–66CrossRefGoogle ScholarPubMed
Saporito, M. S., Brown, E. M., Miller, M. S. & Carswell, S. (1999). CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons in vivo. J. Pharmacol. Exp. Ther., 288, 421–7Google ScholarPubMed
Saporito, M. S., Thomas, B. A. & Scott, R. W. (2000). MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J. Neurochem., 75, 1200–8CrossRefGoogle ScholarPubMed
Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M. E. (1998). Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell, 95, 55–66CrossRefGoogle Scholar
Saunders, P. A., Chen, R. W. & Chuang, D. M. (1999). Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase isoforms during neuronal apoptosis. J. Neurochem., 72, 925–32CrossRefGoogle ScholarPubMed
Schulz, J. B., Weller, M., Matthews, R. T.et al. (1998). Extended therapeutic window for caspase inhibition and synergy with MK-801 in the treatment of cerebral histotoxic hypoxia. Cell Death Differ., 5, 847–57CrossRefGoogle ScholarPubMed
Shashidharan, P., Chalmers-Redman, R. M., Carlile, G. W.et al. (1999). Nuclear translocation of GAPDH-GFP fusion protein during apoptosis. NeuroReport, 10, 1149–53CrossRefGoogle ScholarPubMed
Shimizu, S., Narita, M. & Tsujimoto, Y. (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature, 399, 483–7Google ScholarPubMed
Simons, M., Beinroth, S., Gleichmann, M.et al. (1999). Adenovirus-mediated gene transfer of IAPs delays apoptosis of cerebellar granule neurons. J. Neurochem., 72, 292–301CrossRefGoogle ScholarPubMed
Slee, E. A., Harte, M. T., Kluck, R. M.et al. (1999). Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol., 144, 281–92CrossRefGoogle Scholar
Somia, N. V., Schmitt, M. J., Vetter, D. E., Antwerp, D., Heinemann, S. F. & Verma, I. M. (1999). LFG: An anti-apoptotic gene that provides protection from fas-mediated cell death. Proc. Natl Acad. Sci., USA, 96, 12667–72CrossRefGoogle ScholarPubMed
Springer, J. E., Azbill, R. D. & Knapp, P. E. (1999). Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat. Med., 5, 943–6CrossRefGoogle ScholarPubMed
Srinivasula, S. M., Hegde, R., Saleh, A.et al. (2001). A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature, 410, 112–16CrossRefGoogle ScholarPubMed
Stennicke, H. R., Deveraux, Q. L., Humke, E. W., Reed, J. C., Dixit, V. M. (1999). Caspase-9 can be activated without proteolytic processing. J. Biol. Chem., 274, 8359–62CrossRefGoogle ScholarPubMed
Thornberry, N. A., Rano, T. A., Peterson, E. P.et al. (1997). A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem., 272, 17907–11CrossRefGoogle Scholar
Tompkins, M., Basgall, E., Zamrini, E. & Hill, W. (1997). Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am. J. Pathol., 150, 119–31Google ScholarPubMed
Loo, G., Saelens, X., Gurp, M., MacFarlane, M., Martin, S. J. & Vandenabeele, P. (2002). The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ., 9, 1031–42Google ScholarPubMed
Velier, J. J., Ellison, J. A., Kikly, K. K., Spera, P. A., Barone, F. C. & Feuerstein, G. Z. (1999). Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J. Neurosci., 19, 5932–41CrossRefGoogle ScholarPubMed
Vila, M., Jackson-Lewis, V. V., Vukosavic, S.et al. (2001). Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Proc. Natl Acad. Sci., USA, 98, 2837–42CrossRefGoogle ScholarPubMed
Viswanath, V., Wu, Z., Fonck, C., Wei, Q., Boonplueang, R. & Andersen, J. K. (2000). Transgenic mice neuronally expressing baculoviral p35 are resistant to diverse types of induced apoptosis, including seizure-associated neurodegeneration. Proc. Natl Acad. Sci., USA, 97, 2270–5CrossRefGoogle ScholarPubMed
Viswanath, V., Wu, Y., Boonplueang, R.et al. (2001). Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease. J. Neurosci., 21, 9519–28CrossRefGoogle ScholarPubMed
Coelln, R., Kugler, S., Bahr, M., Weller, M., Dichgans, J. & Schulz, J. B. (2001). Rescue from death but not from functional impairment: caspase inhibition protects dopaminergic cells against 6-hydroxydopamine-induced apoptosis but not against the loss of their terminals. J. Neurochem., 77, 263–73CrossRefGoogle Scholar
Vukosavic, S., Dubois-Dauphin, M., Romero, N. & Przedborski, S. (1999). Bax and Bcl-2 interaction in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem., 73, 2460–8CrossRefGoogle Scholar
Vukosavic, S., Stefanis, L., Jackson-Lewis, V.et al. (2000). Delaying caspase activation by Bcl-2: a clue to disease retardation in a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurosci., 20, 9119–25CrossRefGoogle Scholar
Waldmeier, P. C., Spooren, W. P. & Hengerer, B. (2000). CGP 3466 protects dopaminergic neurons in lesion models of Parkinson's disease. Naunyn Schmiedebergs Arch. Pharmacol., 362, 526–37CrossRefGoogle ScholarPubMed
Wellington, C. L., Ellerby, L. M., Hackam, A. S.et al. (1998). Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem., 273, 9158–67CrossRefGoogle ScholarPubMed
Wellington, C. L., Ellerby, L. M., Gutekunst, C. A.et al. (2002). Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease. J. Neurosci., 22, 7862–72CrossRefGoogle ScholarPubMed
Whitfield, J., Neame, S. J., Paquet, L., Bernard, O. & Ham, J. (2001). Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron, 29, 629–43CrossRefGoogle ScholarPubMed
Wu, D. C., Jackson-Lewis, V., Vila, M.et al. (2002). Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci., 22, 1763–71CrossRefGoogle ScholarPubMed
Wüllner, U., Kornhuber, J., Weller, M.et al. (1999). Cell death and apoptosis regulating proteins in Parkinson's disease – a cautionary note. Acta Neuropathol., 97, 408–12Google ScholarPubMed
Xia, X. G., Harding, T., Weller, M., Bieneman, A., Uney, J. B. & Schulz, J. B. (2001). Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson's disease. Proc. Natl Acad. Sci., USA, 98, 10433–8CrossRefGoogle ScholarPubMed
Xu, D. G., Crocker, S. J., Doucet, J.-P.et al. (1997). Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nat. Med., 3, 997–1004CrossRefGoogle Scholar
Xu, D., Bureau, Y., McIntyre, D. C.et al. (1999). Attenuation of ischemia-induced cellular and behavioral deficits by X chromosome-linked inhibitor of apoptosis protein overexpression in the rat hippocampus. J. Neurosci., 19, 5026–33CrossRefGoogle ScholarPubMed
Yakovlev, A. G., Knoblach, S. M., Fan, L., Fox, G. B., Goodnight, R. & Faden, A. I. (1997). Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J. Neurosci., 17, 7415–24CrossRefGoogle ScholarPubMed
Yang, L., Matthews, R. T., Schulz, J. B.et al. (1998). MPTP neurotoxicity is attenuated in mice overexpressing Bcl-2. J. Neurosci., 18, 8145–52CrossRefGoogle ScholarPubMed
Yang, L., Sugama, S., Chirichigno, J. W.et al. (2003). Minocycline enhances MPTP toxicity to dopaminergic neurons, J. Neurosci. Res., 74, 278–85CrossRefGoogle ScholarPubMed
Zhu, S., Stavrovskaya, I. G., Drozda, M.et al. (2002). Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature, 417, 74–8CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×