Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-13T11:39:09.769Z Has data issue: false hasContentIssue false

14 - Molecular Compounds under Extreme Conditions

Published online by Cambridge University Press:  03 August 2023

Yingwei Fei
Affiliation:
Carnegie Institution of Washington, Washington DC
Michael J. Walter
Affiliation:
Carnegie Institution of Washington, Washington DC
Get access

Summary

This chapter reviews the tremendous progress over the past several decades in experimental research of molecular solids at high pressures. The interatomic interactions in these materials are greatly modified under pressure and generally strengthen intermolecular and weaken intramolecular bonds. This leads to the formation of structurally complex crystals and inclusion compounds at moderate pressures, where a variety of intermolecular bonds can exist. Pressing on, a great majority of molecular solids demonstrate transformations to extended (e.g., polymeric) states, which vary drastically in bonding and electronic properties. The most prominent example of such behavior is the symmetrization of hydrogen bonds in ionic ice X and metallization of hydrogen in monatomic solid. Dave Mao’s legacy in this research has been remarkable ranging from discovering and establishing the structure and properties of hydrogen clathrate hydrates at 200 MPa to investigating the structure of a mixed atomic-molecular phase IV of hydrogen at 260 GPa. New generations of scientists continue to use and build upon his technical developments, which have enabled multimegabar investigations of molecular solids, including diamond anvil cell (DAC) design, the DAC gas-loading system, and a variety of optical, electric, magnetic, and X-ray DAC probes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahart, M., Karandikar, A., Gramsch, S., Boehler, R., Hemley, R. J. (2014). High P–T Brillouin scattering study of H2O melting to 26 GPa. High Pressure Research, 34(3), 327336.Google Scholar
Ahart, M., Somayazulu, M., Gramsch, S. A., Boehler, R., Mao, H.-k., Hemley, R. J. (2011). Brillouin scattering of H2O ice to megabar pressures. Journal of Chemical Physics, 134(12), 124517.Google Scholar
Akahama, Y., Mizuki, Y., Nakano, S., Hirao, N., Ohishi, Y. (2017). Raman scattering and X-ray diffraction studies on phase III of solid hydrogen. Journal of Physics: Conference Series, 950, 042060.Google Scholar
Aoki, K., Yamawaki, H., Sakashita, M., Fujihisa, H. (1996). Infrared absorption study of the hydrogen-bond symmetrization in ice to 110 GPa. Physical Review B, 54(22), 1567315677.Google Scholar
Ashcroft, N. W. (1968). Metallic hydrogen: a high-temperature superconductor? Physical Review Letters, 21(26), 17481749.CrossRefGoogle Scholar
Ashcroft, N. W. (1990). Pairing instabilities in dense hydrogen. Physical Review B, 41(16), 1096310971.CrossRefGoogle ScholarPubMed
Babaev, E., Sudbø, A., Ashcroft, N. W. (2004). A superconductor to superfluid phase transition in liquid metallic hydrogen. Nature, 431(7009), 666668.CrossRefGoogle ScholarPubMed
Baer, B. J., Nicol, M. (1990). High-pressure binary phase diagram of nitrogen–oxygen at 295 K determined by Raman spectroscopy. Journal of Physical Chemistry, 94(3), 10731078.CrossRefGoogle Scholar
Bazarkina, E. F., Chou, I.-M., Goncharov, A. F., Akinfiev, N. N. (2020). The behavior of H2 in aqueous fluids under high temperature and pressure. Elements, 16(1), 3338.Google Scholar
Bell, P. M., Mao, H. K. (1981). Degrees of hydrostaticity in He, Ne, and Ar pressure-transmitting media. Carnegie Institution of Washington Yearbook, 80, 404406.Google Scholar
Benoit, M., Bernasconi, M., Focher, P., Parrinello, M. (1996). New high-pressure phase of ice. Physical Review Letters, 76(16), 29342936.Google Scholar
Benoit, M., Romero, A. H., Marx, D. (2002). Reassigning hydrogen-bond centering in dense ice. Physical Review Letters, 89(14), 145501.CrossRefGoogle ScholarPubMed
Bini, R., Ulivi, L., Kreutz, J., Jodl, H. J. (2000). High-pressure phases of solid nitrogen by Raman and infrared spectroscopy. Journal of Chemical Physics, 112(19), 85228529.Google Scholar
Boehler, R., Guthrie, M., Molaison, J. J., et al. (2013). Large-volume diamond cells for neutron diffraction above 90 GPa. High Pressure Research, 33(3), 546554.Google Scholar
Brovman, E. G., Kagan, Y., Kholas, A. (1972). Structure of metallic hydrogen at zero pressure. Soviet Journal of Experimental and Theoretical Physics, 34, 1300.Google Scholar
Caracas, R. (2008). Dynamical instabilities of ice X. Physical Review Letters, 101(8), 085502.CrossRefGoogle ScholarPubMed
Cavazzoni, C., Chiarotti, G. L., Scandolo, S., Tosatti, E., Bernasconi, M., Parrinello, M. (1999). Superionic and metallic states of water and ammonia at giant planet conditions. Science, 283(5398), 4446.Google Scholar
Ceppatelli, M., Bini, R., Schettino, V. (2009). High-pressure photodissociation of water as a tool for hydrogen synthesis and fundamental chemistry. Proceedings of the National Academy of Sciences, 106(28), 1145411459.Google Scholar
Chen, J., Li, X.-Z., Zhang, Q., et al. (2013). Quantum simulation of low-temperature metallic liquid hydrogen. Nature Communications, 4(1), 2064.CrossRefGoogle ScholarPubMed
Chen, L., Matsunami, M., Nanba, T., et al. (2004). Far-infrared spectroscopy on solids under high pressure by infrared synchrotron radiation. Paper presented at the Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004.Google Scholar
Cheng, P., Yang, X., Zhang, X., Wang, Y., Jiang, S., Goncharov, A. F. (2020). Polymorphism of polymeric nitrogen at high pressures. Journal of Chemical Physics, 152(24), 244502.Google Scholar
Connerney, J. E. P., Benn, M., Bjarno, J. B., et al. (2017). The Juno magnetic field investigation. Space Science Reviews, 213(1), 39138.CrossRefGoogle Scholar
Conway, L. J., Hermann, A. (2019). High pressure hydrocarbons revisited: from van der Waals compounds to diamond. Geosciences, 9, 227.Google Scholar
del Rosso, L., Celli, M., Ulivi, L. (2016). New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice. Nature Communications, 7(1), 13394.CrossRefGoogle ScholarPubMed
Dewaele, A., Loubeyre, P., Occelli, F., Marie, O., Mezouar, M. (2018). Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nature Communications, 9(1), 2913.Google Scholar
Dias, R. P., Silvera, I. F. (2017). Observation of the Wigner–Huntington transition to metallic hydrogen. Science, 355(6326), 715718.Google Scholar
Donohue, J. (1961). A refinement of the positional parameter in a-nitrogen. Acta Crystallographica, 14(9), 10001001.Google Scholar
Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V., Shylin, S. I. (2015). Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525(7567), 7376.Google Scholar
Drozdov, A. P., Kong, P. P., Minkov, V. S., et al. (2019). Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569(7757), 528531.CrossRefGoogle ScholarPubMed
Drummond, N. D., Monserrat, B., Lloyd-Williams, J. H., Ríos, P. L., Pickard, C. J., Needs, R. J. (2015). Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures. Nature Communications, 6(1), 7794.CrossRefGoogle ScholarPubMed
Duan, D., Liu, Y., Tian, F., et al. (2014). Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Scientific Reports, 4(1), 6968.Google Scholar
Dubrovinsky, L., Dubrovinskaia, N., Katsnelson, M. I. (2020). No evidence of isostructural electronic transitions in compressed hydrogen. arXiv:1910.10772v1 [cond-mat.mtrl-sci].Google Scholar
Edwards, B., Ashcroft, N. W. (1997). Spontaneous polarization in dense hydrogen. Nature, 388(6643), 652655.CrossRefGoogle Scholar
Efimchenko, V. S., Kuzovnikov, M. A., Fedotov, V. K., Sakharov, M. K., Simonov, S. V., Tkacz, M. (2011). New phase in the water–hydrogen system. Journal of Alloys and Compounds, 509, S860S863.Google Scholar
Eremets, M., Hemley, R., Mao, H.-k., Gregoryanz, E. (2001). Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability. Nature, 411, 170174.Google Scholar
Eremets, M. I., Drozdov, A. P., Kong, P. P., Wang, H. (2019). Semimetallic molecular hydrogen at pressure above 350 GPa. Nature Physics, 1512461249.CrossRefGoogle Scholar
Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A., Boehler, R. (2004). Single-bonded cubic form of nitrogen. Nature Materials, 3(8), 558563.CrossRefGoogle ScholarPubMed
Eremets, M. I., Troyan, I. A. (2011). Conductive dense hydrogen. Nature Materials, 10(12), 927931.Google Scholar
Falenty, A., Hansen, T. C., Kuhs, W. F. (2014). Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature, 516(7530), 231233.CrossRefGoogle ScholarPubMed
Frost, M., Howie, R. T., Dalladay-Simpson, P., Goncharov, A. F., Gregoryanz, E. (2016). Novel high-pressure nitrogen phase formed by compression at low temperature. Physical Review B, 93(2), 024113.Google Scholar
Goncharenko, I., Loubeyre, P. (2005). Neutron and X-ray diffraction study of the broken symmetry phase transition in solid deuterium. Nature, 435(7046), 12061209.CrossRefGoogle ScholarPubMed
Goncharov, A., Gregoryanz, E. (2005). Solid nitrogen at extreme conditions of high pressure and temperature, in Manaa, M. R., ed., Chemistry at Extreme Conditions. Elsevier, pp. 241267.CrossRefGoogle Scholar
Goncharov, A. F. (2012). Raman spectroscopy at high pressures. International Journal of Spectroscopy, 2012, 617528.Google Scholar
Goncharov, A. F. (2020). Phase diagram of hydrogen at extreme pressures and temperatures; updated through 2019 (review article). Low Temperature Physics, 46(2), 97103.Google Scholar
Goncharov, A. F., Chuvashova, I., Ji, C., Mao, H.-k. (2019). Intermolecular coupling and fluxional behavior of hydrogen in phase IV. PNAS, 116(51), 2551225515.Google Scholar
Goncharov, A. F., Crowhurst, J. (2007). Proton delocalization under extreme conditions of high pressure and temperature. Phase Transitions, 80(10–12), 10511072.CrossRefGoogle Scholar
Goncharov, A. F., Crowhurst, J. C., Struzhkin, V. V., Hemley, R. J. (2008). Triple point on the melting curve and polymorphism of nitrogen at high pressure. Physical Review Letters, 101(9), 095502.CrossRefGoogle ScholarPubMed
Goncharov, A. F., Eggert, J. H., Mazin, I. I., Hemley, R. J., Mao, H.-k. (1996). Raman excitations and orientational ordering in deuterium at high pressure. Physical Review B, 54(22), R15590R15593.Google Scholar
Goncharov, A. F., Goldman, N., Fried, L. E., Crowhurst, J. C., Kuo, I. F. W., Mundy, C. J., Zaug, J. M. (2005). Dynamic ionization of water under extreme conditions. Physical Review Letters, 94(12), 125508.CrossRefGoogle ScholarPubMed
Goncharov, A. F., Gregoryanz, E., Mao, H.-K., Hemley, R. J. (2001). Vibrational dynamics of solid molecular nitrogen to megabar pressures. Low Temperature Physics, 27(9), 866869.CrossRefGoogle Scholar
Goncharov, A. F., Gregoryanz, E., Mao, H.-k., Liu, Z., Hemley, R. J. (2000). Optical evidence for a nonmolecular phase of nitrogen above 150 GPa. Physical Review Letters, 85(6), 12621265.Google Scholar
Goncharov, A. F., Hemley, R. J., Mao, H.-k. (2011). Vibron frequencies of solid H2 and D2 to 200 GPa and implications for the P–T phase diagram. Journal of Chemical Physics, 134(17), 174501.CrossRefGoogle ScholarPubMed
Goncharov, A. F., Hemley, R. J., Mao, H.-k., Shu, J. (1998). New high-pressure excitations in parahydrogen. Physical Review Letters, 80(1), 101104.Google Scholar
Goncharov, A. F., Holtgrewe, N., Qian, G., et al. (2015). Backbone NxH compounds at high pressures. Journal of Chemical Physics, 142(21), 214308.Google Scholar
Goncharov, A. F., Howie, R. T., Gregoryanz, E. (2013). Hydrogen at extreme pressures (review article). Low Temperature Physics, 39(5), 402408.Google Scholar
Goncharov, A. F., Kong, L., Mao, H.-k. (2019). High-pressure integrated synchrotron infrared spectroscopy system at the Shanghai Synchrotron Radiation Facility. Review of Scientific Instruments, 90, 093905.CrossRefGoogle ScholarPubMed
Goncharov, A. F., Lobanov, S. S., Prakapenka, V. B., Greenberg, E. (2017). Stable high-pressure phases in the H–S system determined by chemically reacting hydrogen and sulfur. Physical Review B, 95(14), 140101.Google Scholar
Goncharov, A. F., Struzhkin, V. V. (2017). Comment on “observation of the Wigner–Huntington transition to metallic hydrogen.” Science, 357(6353), eaam9736.Google Scholar
Goncharov, A. F., Struzhkin, V. V., Hemley, R. J., Mao, H.-k., Liu, Z. (2000). New techniques for optical spectroscopy at ultrahigh pressures, in Manghnani, M, Nellis, W. J., Nicol, M. F., eds. Science and Technology of High Pressure: Proceedings of AIRAPT-17. Universities Press, pp. 9095.Google Scholar
Goncharov, A. F., Struzhkin, V. V., Mao, H. K., Hemley, R. J. (1999). Raman spectroscopy of dense H2O and the transition to symmetric hydrogen bonds. Physical Review Letters, 83(10), 19982001.Google Scholar
Goncharov, A. F., Struzhkin, V. V., Somayazulu, M. S., Hemley, R. J., Mao, H. K. (1996). Compression of ice to 210 gigapascals: infrared evidence for a symmetric hydrogen-bonded phase. Science, 273(5272), 218220.Google Scholar
Goncharov, A. F., Tse, J. S., Wang, H., et al. (2013). Bonding, structures, and band gap closure of hydrogen at high pressures. Physical Review B, 87(2), 024101.Google Scholar
Gregoryanz, E., Goncharov, A. F., Hemley, R. J., Mao, H.-k. (2001). High-pressure amorphous nitrogen. Physical Review B, 64(5), 052103.Google Scholar
Gregoryanz, E., Goncharov, A. F., Hemley, R. J., Mao, H.-k., Somayazulu, M., Shen, G. (2002). Raman, infrared, and X-ray evidence for new phases of nitrogen at high pressures and temperatures. Physical Review B, 66(22), 224108.Google Scholar
Gregoryanz, E., Goncharov, A. F., Sanloup, C., Somayazulu, M., Mao, H.-k., Hemley, R. J. (2007). High P–T transformations of nitrogen to 170 GPa. Journal of Chemical Physics, 126(18), 184505.Google Scholar
Gregoryanz, E., Ji, C., Dalladay-Simpson, P., Li, B., Howie, R. T., Mao, H.-K. (2020). Everything you always wanted to know about metallic hydrogen but were afraid to ask. Matter and Radiation at Extremes, 5(3), 038101.CrossRefGoogle Scholar
Grin, Y., Wagner, F. R., Armbrüster, M., et al. (2006). CuAl2 revisited: composition, crystal structure, chemical bonding, compressibility and Raman spectroscopy. Journal of Solid State Chemistry, 179(6), 17071719.Google Scholar
Guillot, T. (2005). The interiors of giant planets: models and outstanding questions. Annual Review of Earth and Planetary Sciences, 33(1), 493530.Google Scholar
Guthrie, M., Boehler, R., Molaison, J. J., Haberl, B., dos Santos, A. M., Tulk, C. (2019). Structure and disorder in ice VII on the approach to hydrogen-bond symmetrization. Physical Review B, 99(18), 184112.CrossRefGoogle Scholar
Guthrie, M., Boehler, R., Tulk, C. A., et al. (2013). Neutron diffraction observations of interstitial protons in dense ice. Proceedings of the National Academy of Sciences, 110(26), 1055210556.Google Scholar
Hanfland, M., Hemley, R. J., Mao, H.-k. (1993). Novel infrared vibron absorption in solid hydrogen at megabar pressures. Physical Review Letters, 70(24), 37603763.Google Scholar
Hanfland, M., Hemley, R. J., Mao, H. K., Williams, G. P. (1992). Synchrotron infrared spectroscopy at megabar pressures: vibrational dynamics of hydrogen to 180 GPa. Physical Review Letters, 69(7), 11291132.CrossRefGoogle ScholarPubMed
Hanfland, M., Lorenzen, M., Wassilew-Reul, C., Zontone, F. (1998). Structures of molecular nitrogen at high pressures. Review of High Pressure Science and Technology, 7, 787789.Google Scholar
Hazen, R. M., Mao, H. K., Finger, L. W., Hemley, R. J. (1987). Single-crystal X-ray diffraction of nH2 at high pressure. Physical Review B, 36(7), 39443947.Google Scholar
Hellwig, H., Daniels, W. B., Hemley, R. J., Mao, H.-k., Gregoryanz, E., Yu, Z. (2001). Coherent anti-Stokes Raman scattering spectroscopy of solid nitrogen to 22 GPa. Journal of Chemical Physics, 115(23), 1087610882.Google Scholar
Hemley, R. J. (2000). Effects of high pressure on molecules. Annual Review of Physical Chemistry, 51(1), 763800.Google Scholar
Hemley, R. J., Bell, P. M., Mao, H. K. (1987). Laser techniques in high-pressure geophysics. Science, 237(4815), 605612.Google Scholar
Hemley, R. J., Goncharov, A. F., Lu, R., Struzhkin, V. V., Li, M., Mao, H. K. (1998). High-pressure synchrotron infrared spectroscopy at the national synchrotron light source. Il Nuovo Cimento D, 20(4), 539551.CrossRefGoogle Scholar
Hemley, R. J., Jephcoat, A. P., Mao, H. K., Zha, C. S., Finger, L. W., Cox, D. E. (1987). Static compression of H2O-ice to 128 GPa (1.28 Mbar). Nature, 330(6150), 737740.Google Scholar
Hemley, R. J., Mao, H. K. (1988). Phase transition in solid molecular hydrogen at ultrahigh pressures. Physical Review Letters, 61(7), 857860.Google Scholar
Hemley, R. J., Mao, H. K. (1989). Optical studies of hydrogen above 200 gigapascals: evidence for metallization by band overlap. Science, 244(4911), 14621465.Google Scholar
Hemley, R. J., Mao, H.-k., Struzhkin, V. V. (2005). Synchrotron radiation and high pressure: new light on materials under extreme conditions. Journal of Synchrotron Radiation, 12(2), 135154.Google Scholar
Holtgrewe, N., Greenberg, E., Prescher, C., Prakapenka, V. B., Goncharov, A. F. (2019). Advanced integrated optical spectroscopy system for diamond anvil cell studies at GSECARS. High Pressure Research, 39(3), 457470.Google Scholar
Holtgrewe, N., Lobanov, S. S., Mahmood, M. F., Goncharov, A. F. (2016). Photochemistry within compressed sodium azide. Journal of Physical Chemistry C, 120(49), 2817628185.Google Scholar
Holzapfel, W. B. (1972). Symmetry of hydrogen-bonds in ice-vii. Journal of Chemical Physics, 56(2), 712715.Google Scholar
Howie, R. T., Dalladay-Simpson, P., Gregoryanz, E. (2015). Raman spectroscopy of hot hydrogen above 200 GPa. Nature Materials, 14(5), 495499.CrossRefGoogle ScholarPubMed
Howie, R. T., Guillaume, C. L., Scheler, T., Goncharov, A. F., Gregoryanz, E. (2012). Mixed molecular and atomic phase of dense hydrogen. Physical Review Letters, 108(12), 125501.Google Scholar
Hubbard, W. B. (1981). Interiors of the giant planets. Science, 214(4517), 145149.Google Scholar
Jenei, Z., O’Bannon, E. F., Weir, S. T., Cynn, H., Lipp, M. J., Evans, W. J. (2018). Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar. Nature Communications, 9(1), 3563.Google Scholar
Ji, C., Adeleke, A. A., Yang, L., et al. (2020). Nitrogen in black phosphorus structure. Science Advances, 6(23), eaba9206.CrossRefGoogle ScholarPubMed
Ji, C., Goncharov, A. F., Shukla, V., et al. (2017). Stability of Ar(H2)2 to 358 GPa. Proceedings of the National Academy of Sciences, 114(14), 35963600.Google Scholar
Ji, C., Li, B., Liu, W., et al. (2019). Ultrahigh-pressure isostructural electronic transitions in hydrogen. Nature, 573(7775), 558562.Google Scholar
Ji, M., Umemoto, K., Wang, C.-Z., Ho, K.-M., Wentzcovitch, R. M. (2011). Ultrahigh-pressure phases of H2O ice predicted using an adaptive genetic algorithm. Physical Review B, 84(22), 220105.Google Scholar
Kamb, B., Davis, B. L. (1964). Ice VII, the densest form of ice. Proceedings of the National Academy of Sciences, 52(6), 14331439.Google Scholar
Koch-Müller, M., Jahn, S., Birkholz, N., Ritter, E., Schade, U. (2016). Phase transitions in the system CaCO3 at high P and T determined by in situ vibrational spectroscopy in diamond anvil cells and first-principles simulations. Physics and Chemistry of Minerals, 43(8), 545561.Google Scholar
Kong, P. P., Minkov, V. S., Kuzovnikov, M. A., et al. (2019). Superconductivity up to 243 K in yttrium hydrides under high pressure. arXiv:1909.10482v1 [cond-mat.supr-con].Google Scholar
Kotakoski, J., Albe, K. (2008). First-principles calculations on solid nitrogen: a comparative study of high-pressure phases. Physical Review B, 77(14), 144109.Google Scholar
Kuriakose, M., Raetz, S., Hu, Q. M., et al. (2017a). Longitudinal sound velocities, elastic anisotropy, and phase transition of high-pressure cubic H2O ice to 82 GPa. Physical Review B, 96(13), 134122.Google Scholar
Kuriakose, M., Raetz, S., Hu, Q. M., et al. (2017b). Longitudinal sound velocities, elastic anisotropy, and phase transition of high-pressure cubic H2O ice to 82 GPa. Physical Review B, 96(13), 134122.Google Scholar
Laniel, D., Geneste, G., Weck, G., Mezouar, M., Loubeyre, P. (2019). Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa. Physical Review Letters, 122(6), 066001.Google Scholar
Laniel, D., Svitlyk, V., Weck, G., Loubeyre, P. (2018). Pressure-induced chemical reactions in the N2(H2)2 compound: from the N2 and H2 species to ammonia and back down into hydrazine. Physical Chemistry Chemical Physics, 20(6), 40504057. 10.1039/C7CP07989C.Google Scholar
Laniel, D., Winkler, B., Fedotenko, T., et al. (2020). High-pressure polymeric nitrogen allotrope with the black phosphorus structure. Physical Review Letters, 124(21), 216001.Google Scholar
Li, B., Ji, C., Yang, W., et al. (2018). Diamond anvil cell behavior up to 4 Mbar. Proceedings of the National Academy of Sciences, 115(8), 17131717.Google Scholar
Li, Y., Feng, X., Liu, H., et al. (2018). Route to high-energy density polymeric nitrogen t–N via He−N compounds. Nature Communications, 9(1), 722.CrossRefGoogle ScholarPubMed
Liang, Y., Tse, J. S. (2009). Mechanisms for the formation of H2 and O2 from X-ray irradiated dense ice. Physical Review B, 79(10), 104105.CrossRefGoogle Scholar
Lipp, M. J., Klepeis, J. P., Baer, B. J., et al. (2007). Transformation of molecular nitrogen to nonmolecular phases at megabar pressures by direct laser heating. Physical Review B, 76(1), 014113.Google Scholar
Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W., Hemley, R. J. (2017). Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proceedings of the National Academy of Sciences, 114(27), 69906995.Google Scholar
Liu, X.-D., Dalladay-Simpson, P., Howie, R. T., Li, B., Gregoryanz, E. (2017). Comment on “observation of the Wigner–Huntington transition to metallic hydrogen.” Science, 357(6353), eaan2286.CrossRefGoogle ScholarPubMed
Liu, Y., Duan, D., Tian, F., et al. (2014). Crystal structures and properties of the CH4H2 compound under high pressure. RSC Advances, 4(71), 3756937574. 10.1039/C4RA05263C.Google Scholar
Lokshin, K. A., Zhao, Y., He, D., et al. (2004). Structure and dynamics of hydrogen molecules in the novel clathrate hydrate by high pressure neutron diffraction. Physical Review Letters, 93(12), 125503.Google Scholar
Londono, D., Kuhs, W. F., Finney, J. L. (1988). Enclathration of helium in ice II: the first helium hydrate. Nature, 332, 141.CrossRefGoogle Scholar
Loubeyre, P., LeToullec, R. (1995). Stability of O2/H2 mixtures at high pressure. Nature, 378(6552), 4446.Google Scholar
Loubeyre, P., LeToullec, R., Hausermann, D., et al. (1996). X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature, 383(6602), 702704.Google Scholar
Loubeyre, P., LeToullec, R., Pinceaux, J. P., Mao, H. K., Hu, J., Hemley, R. J. (1993). Equation of state and phase diagram of solid 4He from single-crystal X-ray diffraction over a large P–T domain. Physical Review Letters, 71(14), 22722275.Google Scholar
Loubeyre, P., LeToullec, R., Wolanin, E., Hanfland, M., Hausermann, D. (1999). Modulated phases and proton centring in ice observed by X-ray diffraction up to 170 GPa. Nature, 397(6719), 503506.Google Scholar
Loubeyre, P., Occelli, F., Dumas, P. (2020). Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature, 577(7792), 631635.Google Scholar
Ma, Y., Oganov, A. R., Li, Z., Xie, Y., Kotakoski, J. (2009). Novel high pressure structures of polymeric nitrogen. Physical Review Letters, 102(6), 065501.CrossRefGoogle ScholarPubMed
Machida, S.-i., Hirai, H., Kawamura, T., Yamamoto, Y., Yagi, T. (2008). Structural changes of filled ice Ic structure for hydrogen hydrate under high pressure. Journal of Chemical Physics, 129(22), 224505.Google Scholar
Mailhiot, C., Yang, L. H., McMahan, A. K. (1992). Polymeric nitrogen. Physical Review B, 46(22), 1441914435.Google Scholar
Mak, T. C. W., McMullan, R. K. (1965). Polyhedral clathrate hydrates. X. Structure of the double hydrate of tetrahydrofuran and hydrogen sulfide. Journal of Chemical Physics, 42(8), 27322737.Google Scholar
Mao, H. K., Bell, P. M. (1977). Technique of operating the diamond-window pressure cell: considerations of the design and functions of the diamond anvils. Carnegie Institute of Washington Yearbook, 76, 646650.Google Scholar
Mao, H. K., Hemley, R. J. (1994). Ultrahigh-pressure transitions in solid hydrogen. Reviews of Modern Physics, 66(2), 671692.Google Scholar
Mao, H. K., Bell, P. M. (1979). Observations of hydrogen at room temperature (25°C) and high pressure (to 500 kilobars). Science, 203(4384), 10041006.Google Scholar
Mao, H. K., Bell, P. M., Shaner, J. W., Steinberg, D. J. (1978). Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. Journal of Applied Physics, 49(6), 32763283.Google Scholar
Mao, H. K., Chen, X.-J., Ding, Y., Li, B., Wang, L. (2018). Solids, liquids, and gases under high pressure. Reviews of Modern Physics, 90(1), 015007.Google Scholar
Mao, H. K., Jephcoat, A. P., Hemly, R. J., et al. (1988). Synchrotron X-ray diffraction measurements of single-crystal hydrogen to 26.5 gigapascals. Science, 239(4844), 11311134.Google Scholar
Mao, H. K., Shirley, E. L., Ding, Y., et al. (2010). Electronic structure of crystalline 4He at high pressures. Physical Review Letters, 105(18), 186404.Google Scholar
Mao, W. L., Mao, H.-k., Goncharov, A. F., et al. (2002). Hydrogen clusters in clathrate hydrate. Science, 297(5590), 22472249.Google Scholar
Mao, W. L., Mao, H.-k., Meng, Y., et al. (2006). X-ray induced dissociation of H2O and formation of an O2–H2 alloy at high pressure. Science, 314(5799), 636638.Google Scholar
Martin, R. M., Needs, R. J. (1986). Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures. Physical Review B, 34(8), 50825092.Google Scholar
McMahan, A. K., LeSar, R. (1985). Pressure dissociation of solid nitrogen under 1 Mbar. Physical Review Letters, 54(17), 19291932.Google Scholar
McMahon, J. M. (2011). Ground-state structures of ice at high pressures from ab initio random structure searching. Physical Review B, 84(22), 220104.Google Scholar
McMahon, J. M., Morales, M. A., Pierleoni, C., Ceperley, D. M. (2012). The properties of hydrogen and helium under extreme conditions. Reviews of Modern Physics, 84(4), 16071653.Google Scholar
Meier, T., Petitgirard, S., Khandarkhaeva, S., Dubrovinsky, L. (2018). Observation of nuclear quantum effects and hydrogen bond symmetrisation in high pressure ice. Nature Communications, 9(1), 2766.Google Scholar
Meng, Y., Von Dreele, R. B., Toby, B. H., et al. (2006). Hard X-ray radiation induced dissociation of N2 and O2 molecules and the formation of ionic nitrogen oxide phases under pressure. Physical Review B, 74(21), 214107.Google Scholar
Mills, R. L., Liebenberg, D. H., Bronson, J. C., Schmidt, L. C. (1980). Procedure for loading diamond cells with high‐pressure gas. Review of Scientific Instruments, 51(7), 891895.Google Scholar
Mills, R. L., Olinger, B., Cromer, D. T. (1986). Structures and phase diagrams of N2 and CO to 13 GPa by X‐ray diffraction. Journal of Chemical Physics, 84(5), 28372845.Google Scholar
Monserrat, B., Drummond, N. D., Dalladay-Simpson, P., et al. (2018). Structure and metallicity of phase V of hydrogen. Physical Review Letters, 120(25), 255701.Google Scholar
Monserrat, B., Needs, R. J., Gregoryanz, E., Pickard, C. J. (2016). Hexagonal structure of phase III of solid hydrogen. Physical Review B, 94(13), 134101.Google Scholar
Murray, M. J., Sanders, J. V. (1980). Close-packed structures of spheres of two different sizes II. The packing densities of likely arrangements. Philosophical Magazine A, 42(6), 721740.Google Scholar
Naumova, A. S., Lepeshkin, S. V., Oganov, A. R. (2019). Hydrocarbons under pressure: phase diagrams and surprising new compounds in the C–H system. Journal of Physical Chemistry C, 123(33), 2049720501.Google Scholar
Nellis, W. J., Holmes, N. C., Mitchell, A. C., van Thiel, M. (1984). Phase transition in fluid nitrogen at high densities and temperatures. Physical Review Letters, 53(17), 16611664.Google Scholar
Nelmes, R. J., Loveday, J. S., Marshall, W. G., Hamel, G., Besson, J. M., Klotz, S. (1998). Multisite disordered structure of ice VII to 20 GPa. Physical Review Letters, 81(13), 27192722.Google Scholar
Ness, N. F. (1979). The magnetic fields of Mercury, Mars, and Moon. Annual Review of Earth and Planetary Sciences, 7(1), 249288.Google Scholar
Nettelmann, N., Becker, A., Holst, B., Redmer, R. (2012). Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2). Astrophysical Journal, 750(1), 52.Google Scholar
Ninet, S., Weck, G., Loubeyre, P., Datchi, F. (2011). Structural and vibrational properties of the van der Waals compound (N2)11He up to 135 GPa. Physical Review B, 83(13), 134107.CrossRefGoogle Scholar
Nosé, S., Klein, M. L. (1983). Structural transformations in solid nitrogen at high pressure. Physical Review Letters, 50(16), 12071210.Google Scholar
Oganov, A. R., Pickard, C. J., Zhu, Q., Needs, R. J. (2019). Structure prediction drives materials discovery. Nature Reviews Materials, 4(5), 331348.Google Scholar
Pace, E. J., Binns, J., Alvarez, M. P., Dalladay-Simpson, P., Gregoryanz, E., Howie, R. T. (2017). Synthesis and stability of hydrogen selenide compounds at high pressure. Journal of Chemical Physics, 147(18), 184303.Google Scholar
Pace, E. J., Liu, X.-D., Dalladay-Simpson, P., et al. (2020). Properties and phase diagram of (H2S)2H2. Physical Review B, 101(17), 174511.Google Scholar
Peng, F., Sun, Y., Pickard, C. J., Needs, R. J., Wu, Q., Ma, Y. (2017). Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Physical Review Letters, 119(10), 107001.Google Scholar
Pickard, C. J., Martinez-Canales, M., Needs, R. J. (2012). Density functional theory study of phase IV of solid hydrogen. Physical Review B, 85(21), 214114.Google Scholar
Pickard, C. J., Martinez-Canales, M., Needs, R. J. (2013). Decomposition and terapascal phases of water ice. Physical Review Letters, 110(24), 245701.Google Scholar
Pickard, C. J., Needs, R. J. (2007). Structure of phase III of solid hydrogen. Nature Physics, 3(7), 473476.Google Scholar
Pickard, C. J., Needs, R. J. (2009). High-pressure phases of nitrogen. Physical Review Letters, 102(12), 125702.Google Scholar
Plisson, T., Weck, G., Loubeyre, P. (2014). N6Ne7: a high pressure van der Waals insertion compound. Physical Review Letters, 113(2), 025702.Google Scholar
Polian, A., Grimsditch, M. (1984). New high-pressure phase of H2O: ice X. Physical Review Letters, 52(15), 13121314.Google Scholar
Popov, M. (2005). Raman and IR study of high-pressure atomic phase of nitrogen. Physics Letters A, 334(4), 317325.Google Scholar
Qian, G.-R., Lyakhov, A. O., Zhu, Q., Oganov, A. R., Dong, X. (2014). Novel hydrogen hydrate structures under pressure. Scientific Reports, 4, 5606.Google Scholar
Ramsey, S. B., Pena-Alvarez, M., Ackland, G. J. (2020). Localization effects on the vibron shifts in helium–hydrogen mixtures. Physical Review B, 101(21), 214306.Google Scholar
Saleh, G., Oganov, A. R. (2016). Novel stable compounds in the C–H–O ternary system at high pressure. Scientific Reports, 6(1), 32486.Google Scholar
Salzmann, C. G., Radaelli, P. G., Mayer, E., Finney, J. L. (2009). Ice XV: a new thermodynamically stable phase of ice. Physical Review Letters, 103(10), 105701.CrossRefGoogle Scholar
Scheerboom, M. I. M., Schouten, J. A. (1993). Anomalous behavior of the vibrational spectrum of the high-pressure delta phase of nitrogen: a second-order transition. Physical Review Letters, 71(14), 22522255.Google Scholar
Schuch, A. F., Mills, R. L. (1970). Crystal structures of the three modifications of nitrogen 14 and nitrogen 15 at high pressure. Journal of Chemical Physics, 52(12), 60006008.Google Scholar
Schwager, B., Boehler, R. (2008). H2O: another ice phase and its melting curve. High Pressure Research, 28(3), 431433.Google Scholar
Schwager, B., Chudinovskikh, L., Gavriliuk, A., Boehler, R. (2004). Melting curve of H2O to 90 GPa measured in a laser-heated diamond cell. Journal of Physics: Condensed Matter, 16(14), S1177.Google Scholar
Seitz, A. E., Hippauf, F., Kremer, W., Kaskel, S., Scheer, M. (2018). Facile storage and release of white phosphorus and yellow arsenic. Nature Communications, 9(1), 361.Google Scholar
Shen, G., Mao, H. K. (2016). High-pressure studies with X-rays using diamond anvil cells. Reports on Progress in Physics, 80(1), 016101.Google Scholar
Shimizu, H., Ohnishi, M., Sasaki, S., Ishibashi, Y. (1995). Cauchy relation in dense H2O ice VII. Physical Review Letters, 74(14), 28202823.Google Scholar
Sihachakr, D., Loubeyre, P. (2004). O2–N2 mixtures under pressure: a structural study of the binary phase diagram at 295 K. Physical Review B, 70(13), 134105.Google Scholar
Sloan, D. E. J., Koh, C. A. (2007). Clathrate Hydrates of Natural Gases. CRC Press.Google Scholar
Snider, E., Dasenbrock-Gammon, N., McBride, R., et al. (2020). Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586(7829), 373377.Google Scholar
Somayazulu, M., Ahart, M., Mishra, A. K., et al. (2019). Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Physical Review Letters, 122(2), 027001.Google Scholar
Somayazulu, M. S., Finger, L. W., Hemley, R. J., Mao, H. K. (1996). High-pressure compounds in methane–hydrogen mixtures. Science, 271(5254), 14001402.Google Scholar
Song, M., Yamawaki, H., Fujihisa, H., Sakashita, M., Aoki, K. (1999). Infrared absorption study of Fermi resonance and hydrogen-bond symmetrization of ice up to 141 GPa. Physical Review B, 60(18), 1264412650.Google Scholar
Spaulding, D. K., Weck, G., Loubeyre, P., Datchi, F., Dumas, P., Hanfland, M. (2014). Pressure-induced chemistry in a nitrogen-hydrogen host–guest structure. Nature Communications, 5(1), 5739.Google Scholar
Stanley, S., Bloxham, J. (2004). Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature, 428(6979), 151153.CrossRefGoogle ScholarPubMed
Stinton, G. W., Loa, I., Lundegaard, L. F., McMahon, M. I. (2009). The crystal structures of δ and δ nitrogen. Journal of Chemical Physics, 131(10), 104511.CrossRefGoogle Scholar
Strobel, T. A., Ganesh, P., Somayazulu, M., Kent, P. R. C., Hemley, R. J. (2011). Novel cooperative interactions and structural ordering in H2S–H2. Physical Review Letters, 107(25), 255503.Google Scholar
Strobel, T. A., Somayazulu, M., Sinogeikin, S. V., Dera, P., Hemley, R. J. (2016). Hydrogen-stuffed, quartz-like water ice. Journal of the American Chemical Society, 138(42), 1378613789.Google Scholar
Struzhkin, V., Li, B., Ji, C., et al. (2020). Superconductivity in La and Y hydrides: remaining questions to experiment and theory. Matter and Radiation at Extremes, 5(2), 028201.Google Scholar
Sugimura, E., Iitaka, T., Hirose, K., Kawamura, K., Sata, N., Ohishi, Y. (2008). Compression of H2O ice to 126 GPa and implications for hydrogen-bond symmetrization: synchrotron X-ray diffraction measurements and density-functional calculations. Physical Review B, 77(21), 214103.Google Scholar
Tomasino, D., Jenei, Z., Evans, W., Yoo, C.-S. (2014a). Melting and phase transitions of nitrogen under high pressures and temperatures. Journal of Chemical Physics, 140(24), 244510.Google Scholar
Tomasino, D., Kim, M., Smith, J., Yoo, C.-S. (2014b). Pressure-Induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP–N) with colossal Raman intensity. Physical Review Letters, 113(20), 205502.Google Scholar
Turnbull, R., Donnelly, M.-E., Wang, M., et al. (2018). Reactivity of hydrogen–helium and hydrogen–nitrogen mixtures at high pressures. Physical Review Letters, 121(19), 195702.Google Scholar
Turnbull, R., Hanfland, M., Binns, J., et al. (2018). Unusually complex phase of dense nitrogen at extreme conditions. Nature Communications, 9(1), 4717.Google Scholar
Vos, W. L., Finger, L. W., Hemley, R. J., Hu, J. Z., Mao, H. K., Schouten, J. A. (1992). A high-pressure van der Waals compound in solid nitrogen–helium mixtures. Nature, 358(6381), 4648.Google Scholar
Vos, W. L., Finger, L. W., Hemley, R. J., Mao, H.-k. (1993). Novel H2-H2O clathrates at high pressures. Physical Review Letters, 71(19), 31503153.Google Scholar
Wang, H., Eremets, M. I., Troyan, I., Liu, H., Ma, Y., Vereecken, L. (2015). Nitrogen backbone oligomers. Scientific Reports, 5(1), 13239.CrossRefGoogle ScholarPubMed
Wang, X., Wang, Y., Miao, M., et al. (2012). Cagelike diamondoid nitrogen at high pressures. Physical Review Letters, 109(17), 175502.Google Scholar
Wang, Y., Glazyrin, K., Roizen, V., et al. (2020). Novel hydrogen clathrate hydrate. Physical Review Letters, 125(25), 255702.Google Scholar
Wang, Y., Zhang, X., Jiang, S., et al. (2019). Helium-hydrogen immiscibility at high pressures. Journal of Chemical Physics, 150(11), 114504.Google Scholar
Weck, G., Datchi, F., Garbarino, G., et al. (2017). Melting curve and liquid structure of nitrogen probed by X-ray diffraction to 120 GPa. Physical Review Letters, 119(23), 235701.Google Scholar
Wigner, E., Huntington, H. B. (1935). On the possibility of a metallic modification of hydrogen. Journal of Chemical Physics, 3(12), 764770.Google Scholar
Yao, Y., Tse, J. S., Tanaka, K. (2008). Metastable high-pressure single-bonded phases of nitrogen predicted via genetic algorithm. Physical Review B, 77(5), 052103.Google Scholar
Zha, C.-s., Cohen, R. E., Mao, H.-k., Hemley, R. J. (2014). Raman measurements of phase transitions in dense solid hydrogen and deuterium to 325 GPa. Proceedings of the National Academy of Sciences, 111(13), 47924797.Google Scholar
Zha, C.-s., Liu, H., Tse, J. S., Hemley, R. J. (2017). Melting and high P–T transitions of hydrogen up to 300 GPa. Physical Review Letters, 119(7), 075302.CrossRefGoogle Scholar
Zhang, X., Xu, W., Wang, Y., et al. (2018). Synthesis and properties of selenium trihydride at high pressures. Physical Review B, 97(6), 064107.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×