Skip to main content Accessibility help
×
Hostname: page-component-788cddb947-kc5xb Total loading time: 0 Render date: 2024-10-14T18:00:24.215Z Has data issue: false hasContentIssue false

7 - Dating the southern African landscape

Published online by Cambridge University Press:  05 June 2016

Jasper Knight
Affiliation:
University of the Witwatersrand, Johannesburg
Stefan W. Grab
Affiliation:
University of the Witwatersrand, Johannesburg
Get access

Summary

Abstract

The southern African landscape has been subject to denudation, sediment mobilisation, and deposition over the last 5 Ma. Dating the geological, geomorphological and archaeological evidence of these processes has been achieved through the application of different dating techniques (cosmogenic, luminescence, radiocarbon, electron spin resonance and uranium series disequilibrium). Dating evidence can address issues such as tectonic versus isostatic uplift, chemical versus physical weathering, water processes in the landscape, the age of hominid remains, and the archaeological trajectory of humans from early modernity to the present. Although dating methods are improving, many problems lie in user errors linked to inadequate understanding of the dating context and limitations of the dating methods. Confidence in chronologies is enhanced through reproducibility, stratigraphic consistency and cross-referencing between different techniques.

Type
Chapter
Information
Quaternary Environmental Change in Southern Africa
Physical and Human Dimensions
, pp. 99 - 120
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armitage, S. J., Botha, G. A., Duller, G. A. T., Wintle, A. G., Rebêlo, L. P. and Momade, F. J. (2006). The formation and evolution of the barrier islands of Inhaca and Bazaruto, Mozambique. Geomorphology, 82, 295308.CrossRefGoogle Scholar
Baldwin, J. A., Whipple, K. X. and Tucker, G. E. (2003). Implications of the shear stress river incision model for the timescale of postorogenic decay of topography. Journal of Geophysical Research, 108, 2158, doi:10.1029/2001JB000550.CrossRefGoogle Scholar
Bar-Matthews, M., Marean, C. W., Jacobs, Z., Karkanas, P., Fisher, E. C., Herries, A. I. R., Brown, K., Williams, H. M., Bernatchez, J., Ayalon, A. and Nilssen, P. J. (2010). A high resolution and continuous isotopic speleothem record of paleoclimate and paleoenvironment from 90 to 53 ka from Pinnacle Point on the south coast of South Africa. Quaternary Science Reviews, 29, 21312145.CrossRefGoogle Scholar
Benito, G., Thorndycraft, V. R., Rico, M. T., Sánchez-Moya, Y., Sopeña, A., Botero, B. A., Machado, M. J., Davis, M. and Pérez-González, A. (2011). Hydrological response of a dryland ephemeral river to southern African climatic variability during the last millennium. Quaternary Research, 75, 471482.CrossRefGoogle Scholar
Bierman, P. R., Coppersmith, R., Hanson, K., Neveling, J., Portenga, E. W. and Rood, D. H. (2014). A cosmogenic view of erosion, relief generation, and the age of faulting in southern Africa. GSA Today, 24 (9), 411.CrossRefGoogle Scholar
Bird, M. I., Fifield, L. K., Santos, G. M., Beaumont, P. B., Zhou, Y., di Tada, M. L. and Hausladen, P. A. (2003). Radiocarbon dating from 40 to 60 ka BP at Border Cave, South Africa. Quaternary Science Reviews, 22, 943947.CrossRefGoogle Scholar
Bird, M. I., Levchenko, V., Ascough, P. L., Meredith, W., Wurster, C. M., Williams, A., Tilston, E. L, Snape, C. E. and Apperley, D. C. (2014). The efficiency of charcoal decontamination for radiocarbon dating by three pre-treatments – ABOX, ABA and hypy. Quaternary Geochronology, 22, 2532.CrossRefGoogle Scholar
Boshoff, P., Kovacs, Z., Van Bladeren, D. and Zawada, P. K. (1993). Potential benefits from palaeoflood investigations in South Africa: Technical note. Journal of the South African Institution of Civil Engineers, 35, 2526.Google Scholar
Boström, B., Comstedt, D. and Ekblad, A. (2007). Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia, 153, 8998.CrossRefGoogle ScholarPubMed
Botha, G. A., Bristow, C. S., Porat, N., Duller, G., Armitage, S. J., Roberts, H. M., Clarke, B. M., Kota, M. W. and Schoeman, P. (2003). Evidence for dune reactivation from GPR profiles on the Maputaland coastal plain, South Africa. In Ground Penetrating Radar in Sediments, ed. Bristow, C. S. and Jol, H. M.. London: Geological Society of London, Special Publications, 211, pp. 2946.Google Scholar
Bourke, M. C., Child, A. and Stokes, S. (2003). Optical age estimates for hyper-arid fluvial deposits at Homeb, Namibia. Quaternary Science Reviews, 22, 10991103.CrossRefGoogle Scholar
Burrough, S. L. and Thomas, D. S. G. (2008). Late Quaternary lake-level fluctuations in the Mababe Depression: Middle Kalahari palaeolakes and the role of Zambezi inflows. Quaternary Research, 69, 388403.CrossRefGoogle Scholar
Butzer, K. W., Beaumont, P. B. and Vogel, J. C. (1978). Lithostratigraphy of Border Cave, KwaZulu, South Africa: A Middle Stone Age sequence beginning c. 195,000 b.p. Journal of Archaeological Science, 5, 317341.CrossRefGoogle Scholar
Callen, R. A., Wasson, R. J. and Gillespie, R. (1983). Reliability of radiocarbon dating of pedogenic carbonate in the Australian arid zone. Sedimentary Geology, 35, 114.CrossRefGoogle Scholar
Carr, A. S., Bateman, M. D. and Holmes, P. J. (2007). Developing a 150 ka luminescence chronology for the barrier dunes of the southern Cape, South Africa. Quaternary Geochronology, 2, 110116.CrossRefGoogle Scholar
Carr, A. S., Bateman, M. D., Roberts, D. L., Murray-Wallace, C. V., Jacobs, Z. and Holmes, P. J. (2010). The last interglacial sea-level high stand on the southern Cape coastline of South Africa. Quaternary Research, 73, 351363.CrossRefGoogle Scholar
Carr, A. S., Thomas, D. S. G., Bateman, M. D., Meadows, M. E. and Chase, B. (2006). Late Quaternary palaeoenvironments of the winter-rainfall zone of southern Africa: Palynological and sedimentological evidence from the Agulhas Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 147165.CrossRefGoogle Scholar
Cawthra, H. C., Uken, R. and Ovechkina, M. N. (2012). New insights into the geological evolution of the Durban Bluff and adjacent Blood Reef, South Africa. South African Journal of Geology, 115, 291308.CrossRefGoogle Scholar
Chadwick, O. A., Roering, J. J., Heimsath, A. M., Levick, S. R., Asner, G. P. and Khomo, L. (2013). Shaping post-orogenic landscapes by climate and chemical weathering. Geology, 41, 11711174.CrossRefGoogle Scholar
Chase, B. M., Meadows, M. E., Carr, A. S. and Reimer, P. J. (2010). Evidence for progressive Holocene aridification in southern Africa recorded in Namibian hyrax middens: Implications for African monsoon dynamics and the “African Humid Period”. Quaternary Research, 74, 3645.CrossRefGoogle Scholar
Chase, B. M., Meadows, M. E., Scott, L., Thomas, D. S. G., Marais, E., Sealy, J. and Reimer, P. J. (2009). A record of rapid Holocene climate change preserved in hyrax middens from southwestern Africa. Geology, 37, 703706.CrossRefGoogle Scholar
Chase, B. M., Quick, L. J., Meadows, M. E., Scott, L., Thomas, D. S. G. and Reimer, P. J. (2011). Late glacial interhemispheric climate dynamics revealed in South African hyrax middens. Geology, 39, 1922.CrossRefGoogle Scholar
Chazan, M., Ron, H., Matmon, A., Porat, N., Goldberg, P., Yates, R., Avery, M., Sumner, A. and Horwitz, L. K. (2008). Radiometric dating of the Earlier Stone Age sequence in Excavation I at Wonderwerk Cave, South Africa: Preliminary results. Journal of Human Evolution, 55, 111.CrossRefGoogle ScholarPubMed
Chirikure, S., Pollard, M., Manyanga, M. and Bandama, F. (2013). A Bayesian chronology for Great Zimbabwe: Re-threading the sequence of a vandalised monument. Antiquity, 87, 854872.CrossRefGoogle Scholar
Cockburn, H. A. P., Brown, R. W., Summerfield, M. A. and Seidl, M. A. (2000). Quantifying passive margin denudation and landscape development using a combined fission-track thermochronology and cosmogenic isotope analysis approach. Earth and Planetary Science Letters, 179, 429435.CrossRefGoogle Scholar
Decker, J. E., Niedermann, S. and de Wit, M. J. (2011). Soil erosion rates in South Africa compared with cosmogenic 3He-based rates of soil production. South African Journal of Geology, 114, 475488.CrossRefGoogle Scholar
Decker, J. E., Niedermann, S. and de Wit, M. J. (2013). Climatically influenced denudation rates of the southern African plateau: Clues to solving a geomorphic paradox. Geomorphology, 190, 4860.CrossRefGoogle Scholar
Dirks, P. H. G. M., Kibii, J. M., Kuhn, B. F., Steininger, C., Churchill, S. E., Kramers, J. D., Pickering, R., Farber, D. L., Mériaux, A.-S., Herries, A. I. R., King, G. C. P. and Berger, L. R. (2010). Geological setting and age of Australopithecus sediba from southern Africa. Science, 328, 205208.CrossRefGoogle ScholarPubMed
Dunai, T. J. (2010). Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences. Cambridge: Cambridge University Press, 198pp.CrossRefGoogle Scholar
Eitel, B., Kadereit, A., Blümel, W. D., Hüser, K. and Kromer, B. (2005). The Amspoort Silts, northern Namib desert (Namibia): Formation, age and palaeoclimatic evidence of river-end deposits. Geomorphology, 64, 299314.CrossRefGoogle Scholar
Eitel, B., Kadereit, A., Blümel, W.-D., Hüser, K., Lomax, J. and Hilgers, A. (2006). Environmental changes at the eastern Namib Desert margin before and after the Last Glacial Maximum: New evidence from fluvial deposits in the upper Hoanib River catchment, northwestern Namibia. Palaeogeography, Palaeoclimatology, Palaeoecology, 234, 201222.CrossRefGoogle Scholar
Erlanger, E. D., Granger, D. E. and Gibbon, R. J. (2012). Rock uplift rates in South Africa from isochron burial dating of fluvial and marine terraces. Geology, 40, 10191022.CrossRefGoogle Scholar
Feathers, J. K. (2002). Luminescence dating in less than ideal conditions: Case studies from Klasies River main site and Duinefontein, South Africa. Journal of Archaeological Science, 29, 177194.CrossRefGoogle Scholar
Fleming, A., Summerfield, M. A., Stone, J. O., Fifield, L. K. and Cresswell, R. G. (1999). Denudation rates for the southern Drakensberg escarpment, SE Africa, derived from in-situ-produced cosmogenic 36Cl: initial results. Journal of the Geological Society, 156, 209212.CrossRefGoogle Scholar
Fuchs, M., Kandel, A. W., Conard, N. J., Walker, S. J. and Felix‐Henningsen, P. (2008). Geoarchaeological and chronostratigraphical investigations of open‐air sites in the Geelbek Dunes, South Africa. Geoarchaeology, 23, 425449.CrossRefGoogle Scholar
Geyh, M. A. and Eitel, B. (1998). Radiometric dating of young and old calcrete. Radiocarbon, 40, 795802.CrossRefGoogle Scholar
Gibbon, R. J., Granger, D. E., Kuman, K. and Partridge, T. C. (2009). Early Acheulean technology in the Vaal River gravels, South Africa, dated with cosmogenic nuclides. Journal of Human Evolution, 56, 152160.CrossRefGoogle ScholarPubMed
Gosse, J. C. and Phillips, F. M. (2001). Terrestrial in situ cosmogenic nuclides: Theory and application. Quaternary Science Reviews, 20, 14751560.CrossRefGoogle Scholar
Granger, D. E. and Muzikar, P. F. (2001). Dating sediment burial with in situ-produced cosmogenic nuclides: Theory, techniques, and limitations. Earth and Planetary Science Letters, 188, 269281.CrossRefGoogle Scholar
Grodek, T., Benito, G., Botero, B. A., Jacoby, Y., Porat, N., Haviv, I., Cloete, G. and Enzel, Y. (2013). The last millennium largest floods in the hyperarid Kuiseb River basin, Namib Desert. Journal of Quaternary Science, 28, 258270.CrossRefGoogle Scholar
Grün, R. (2007). Electron Spin Resonance Dating. In Encyclopedia of Quaternary Science, ed. Elias, S. A.. Amsterdam: Elsevier, 2, pp. 15051516.CrossRefGoogle Scholar
Grün, R. and Beaumont, P. (2001). Border Cave revisited: A revised ESR chronology. Journal of Human Evolution, 40, 467482.CrossRefGoogle ScholarPubMed
Henshilwood, C. S., d’Errico, F., Yates, R., Jacobs, Z., Tribolo, C., Duller, G. A. T., Mercier, N., Sealy, J. C., Valladas, H., Watts, I. and Wintle, A. G. (2002). Emergence of modern human behavior: Middle Stone Age engravings from South Africa. Science, 295, 12781280.CrossRefGoogle ScholarPubMed
Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T. P., Heaton, T.J., Palmer, J. G., Reimer, P.J., Reimer, R. W., Turney, C. S. M. and Zimmerman, S. R. H. (2013). SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon, 55, 18891903.CrossRefGoogle Scholar
Hogg, A. G., McCormac, F. G., Higham, T. F., Reimer, P. J., Baillie, M. G. and Palmer, J. G. (2002). High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850–950. Radiocarbon, 44, 633640.CrossRefGoogle Scholar
Holmgren, K., Lauritzen, S.-E. and Possnert, G. (1994). 230Th 234U and 14C dating of a late Pleistocene stalagmite in Lobatse II Cave, Botswana. Quaternary Science Reviews, 13, 111119.CrossRefGoogle Scholar
Holmgren, K., Lee-Thorp, J. A., Cooper, G. R. J., Lundblad, K., Partridge, T. C., Scott, L., Sithaldeen, R., Talma, A. S. and Tyson, P. D. (2003). Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quaternary Science Reviews, 22, 23112326.CrossRefGoogle Scholar
Huffman, T. N. (2007). Handbook to the Iron Age: The Archaeology of Pre-Colonial Farming Societies in Southern Africa. Scottsville: University of KwaZulu-Natal, 518pp.Google Scholar
Huffman, T. N. (2010). Intensive El Niño and the Iron Age of South-eastern Africa. Journal of Archaeological Science, 37, 25722586.CrossRefGoogle Scholar
Huffman, T. N. (2015). Social complexity in southern Africa. African Archaeological Review, 32, 7191.CrossRefGoogle Scholar
Huffman, T. N. and Vogel, J. C. (1991). The chronology of Great Zimbabwe. South African Archaeological Bulletin, 46, 6170.CrossRefGoogle Scholar
Ivy-Ochs, S. and Kober, F. (2008). Surface exposure dating with cosmogenic nuclides. Eiszeitalter und Gegenwart, 57, 179209.Google Scholar
Jacobs, Z., Duller, G. A. T. and Wintle, A. G. (2003b). Optical dating of dune sand from Blombos Cave, South Africa: II – single grain data. Journal of Human Evolution, 44, 613625.CrossRefGoogle ScholarPubMed
Jacobs, Z. and Roberts, D. L. (2009). Last Interglacial Age for aeolian and marine deposits and the Nahoon fossil human footprints, Southeast Coast of South Africa. Quaternary Geochronology, 4, 160169.CrossRefGoogle Scholar
Jacobs, Z., Roberts, R. G., Galbraith, R. F., Deacon, H. J., Grün, R., Mackay, A., Mitchell, P., Vogelsang, R. and Wadley, L. (2008). Ages for the Middle Stone Age of southern Africa: Implications for human behavior and dispersal. Science, 322, 733735.CrossRefGoogle ScholarPubMed
Jacobs, Z., Wintle, A. G. and Duller, G. A. T. (2003a). Optical dating of dune sand from Blombos Cave, South Africa: I—multiple grain data. Journal of Human Evolution, 44, 599612.CrossRefGoogle ScholarPubMed
Keen-Zebert, A., Tooth, S., Rodnight, H., Duller, G. A. T., Roberts, H. M. and Grenfell, M. (2013). Late Quaternary floodplain reworking and the preservation of alluvial sedimentary archives in unconfined and confined river valleys in the eastern interior of South Africa. Geomorphology, 185, 5466.CrossRefGoogle Scholar
Kounov, A., Niedermann, S., de Wit, M. J., Viola, G., Andreoli, M. and Erzinger, J. (2007). Present denudation rates at selected sections of the South African escarpment and the elevated continental interior based on cosmogenic 3He and 21Ne. South African Journal of Geology, 110, 235248.CrossRefGoogle Scholar
Kristen, I., Fuhrmann, A., Thorpe, J., Röhl, U., Wilkes, H. and Oberhänsli, H. (2007). Hydrological changes in southern Africa over the last 200 Ka as recorded in lake sediments from the Tswaing impact crater. South African Journal of Geology, 110, 311326.CrossRefGoogle Scholar
Lal, D. (1991). Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth and Planetary Science Letters, 104, 424439.CrossRefGoogle Scholar
Libby, W. F., Anderson, E. C. and Arnold, J. R. (1949). Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science, 109, 227228.CrossRefGoogle ScholarPubMed
Lyons, R., Tooth, S. and Duller, G. A. T. (2013). Chronology and controls of donga (gully) formation in the upper Blood River catchment, KwaZulu-Natal, South Africa: Evidence for a climatic driver of erosion. The Holocene, 23, 18751887.CrossRefGoogle Scholar
Marren, P. M., McCarthy, T. S., Tooth, S., Brandt, D., Stacey, G. G., Leong, A. and Spottiswoode, B. (2006). A comparison of mud- and sand-dominated meanders in a downstream coarsening reach of the mixed bedrock-alluvial Klip River, eastern Free State, South Africa. Sedimentary Geology, 190, 213226.CrossRefGoogle Scholar
McCarthy, T. and Rubidge, B. (2005). The Story of Earth & Life; A Southern African Perspective on a 4.6-billion-year Journey. Cape Town: Struik Nature, 335pp.Google Scholar
McCormac, F. G., Hogg, A. G., Blackwell, P. G., Buck, C. E., Higham, T. F. G. and Reimer, P. J. (2004). ShCalO4 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon, 46, 10871092.CrossRefGoogle Scholar
Midgley, J. J., Harris, C., Hesse, H. and Swift, A. (2002). Heuweltjie age and vegetation change based on δ13C and 14C analyses. South African Journal of Science, 98, 202204.Google Scholar
Millard, A. R. (2006). Bayesian analysis of ESR dates, with application to Border Cave. Quaternary Geochronology, 1, 159166.CrossRefGoogle Scholar
Miller, G. H., Beaumont, P. B., Deacon, H. J., Brooks, A. S., Hare, P. E. and Jull, A. J. T. (1999). Earliest modern humans in southern Africa dated by isoleucine epimerization in ostrich eggshell. Quaternary Science Reviews, 18, 15371548.CrossRefGoogle Scholar
Mills, S. C. and Grab, S. W. (2005). Debris ridges along the southern Drakensberg escarpment as evidence for Quaternary glaciation in southern Africa. Quaternary International, 129, 6173.CrossRefGoogle Scholar
Mulrooney, M. A. (2013). An island-wide assessment of the chronology of settlement and land use on Rapa Nui (Easter Island) based on radiocarbon data. Journal of Archaeological Science, 40, 43774399.CrossRefGoogle Scholar
Parkington, J. E. (1990). A critique of the consensus view on the age of Howieson’s Poort assemblages in South Africa. In The Emergence of Modern Humans: An Archaeological Perspective, ed. Mellars, P. A.. Edinburgh: Edinburgh University Press, pp. 3455.Google Scholar
Parkington, J. E. and Poggenpoel, C. (1987). Diepkloof rock shelter. In Papers in the Prehistory of the Western Cape, South Africa, Parkington, J. and Hall, M. (eds). Oxford: BAR International Series, 332, pp. 269293.Google Scholar
Partridge, T. C. (2005). Dating of the Sterkfontein hominids: Progress and possibilities. Transactions of the Royal Society of South Africa, 60, 107109.CrossRefGoogle Scholar
Partridge, T. C., Demenocal, P. B., Lorentz, S. A., Paiker, M. J. and Vogel, J. C. (1997). Orbital forcing of climate over South Africa: A 200,000-year rainfall record from the Pretoria Saltpan. Quaternary Science Reviews, 16, 11251133.CrossRefGoogle Scholar
Partridge, T. C., Granger, D. E., Caffee, M. W. and Clarke, R. J. (2003). Lower Pliocene hominid remains from Sterkfontein. Science, 300, 607612.CrossRefGoogle ScholarPubMed
Pickering, R., Dirks, P. H. G. M., Jinnah, Z., de Ruiter, D. J., Churchill, S. E., Herries, A. I. R., Woodhead, J. D., Hellstrom, J. C. and Berger, L. R. (2011). Australopithecus sediba at 1.977 Ma and implications for the origins of the genus Homo. Science, 333, 14211423.CrossRefGoogle Scholar
Pickering, R. and Kramers, J. D. (2010). Re-appraisal of the stratigraphy and determination of new U-Pb dates for the Sterkfontein hominin site, South Africa. Journal of Human Evolution, 59, 7086.CrossRefGoogle ScholarPubMed
Pickering, R., Kramers, J. D., Partridge, T., Kodolanyi, J. and Pettke, T. (2010). U–Pb dating of calcite–aragonite layers in speleothems from hominin sites in South Africa by MC-ICP-MS. Quaternary Geochronology, 5, 544558.CrossRefGoogle Scholar
Pienaar, M., Woodborne, S. and Wadley, L. (2008). Optically stimulated luminescence dating at Rose Cottage Cave. South African Journal of Science, 104, 6570.Google Scholar
Porat, N., Chazan, M., Grün, R., Aubert, M., Eisenmann, V. and Horwitz, L. K. (2010). New radiometric ages for the Fauresmith industry from Kathu Pan, southern Africa: Implications for the Earlier to Middle Stone Age transition. Journal of Archaeological Science, 37, 269283.CrossRefGoogle Scholar
Portenga, E. W. and Bierman, P. R. (2011). Understanding Earth’s eroding surface with 10Be. GSA Today, 21 (8), 410.CrossRefGoogle Scholar
Potts, A. J., Midgley, J. J. and Harris, C. (2009). Stable isotope and 14C study of biogenic calcrete in a termite mound, Western Cape, South Africa, and its palaeoenvironmental significance. Quaternary Research, 72, 258264.CrossRefGoogle Scholar
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Bertrand, C. J. H., Blackwell, P.G., Buck, C. E., Burr, G. S., Cutler, K. B., Damon, P. E., Edwards, R. L., Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Hogg, A. G., Hughen, K. A., Kromer, B., McCormac, G., Manning, S., Ramsey, C. B., Reimer, R. W., Remmele, S., Southon, J. R., Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J. and Weyhenmeyer, C. E. (2004). IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon, 46, 10291058.Google Scholar
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M. and van der Plicht, J. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55, 18691887.CrossRefGoogle Scholar
Roberts, D. L. (2008). Last interglacial hominid and associated vertebrate fossil trackways in coastal eolianites, South Africa. Ichnos, 15, 190207.CrossRefGoogle Scholar
Roberts, D. L., Bateman, M. D., Murray-Wallace, C. V., Carr, A. S. and Holmes, P. J. (2009). West coast dune plumes: Climate driven contrasts in dunefield morphogenesis along the western and southern South African coasts. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 2438.CrossRefGoogle Scholar
Rodnight, H., Duller, G. A. T., Tooth, S. and Wintle, A. G. (2005). Optical dating of a scroll-bar sequence on the Klip River, South Africa, to derive the lateral migration rate of a meander bend. The Holocene, 15, 802811.CrossRefGoogle Scholar
Scharf, T. E., Codilean, A. T., de Wit, M., Jansen, J. D. and Kubik, P. W. (2013). Strong rocks sustain ancient postorogenic topography in southern Africa. Geology, 41, 331334.CrossRefGoogle Scholar
Schwarcz, H. P., Grün, R. and Tobias, P. V. (1994). ESR dating studies of the australopithecine site of Sterkfontein, South Africa. Journal of Human Evolution, 26, 175181.CrossRefGoogle Scholar
Scott, E. M., Bryant, C., Cook, G. T. and Naysmith, P. (2003). Is there a fifth international radiocarbon intercomparison (VIRI)? Radiocarbon, 45, 493495.CrossRefGoogle Scholar
Scott, L., Holmgren, K., Talma, A. S., Woodborne, S. and Vogel, J. C. (2003). Age interpretation of the Wonderkrater spring sediments and vegetation change in the Savanna Biome, Limpopo province, South Africa. South African Journal of Science, 99, 484488.Google Scholar
Spriggs, M. (1989). The dating of the Island Southeast Asian Neolithic: An attempt at chronometric hygiene and linguistic correlation. Antiquity, 63, 587613.CrossRefGoogle Scholar
Srivastava, P., Brook, G. A., Marais, E., Morthekai, P. and Singhvi, A. K. (2006). Depositional environment and OSL chronology of the Homeb silt deposits, Kuiseb River, Namibia. Quaternary Research, 65, 478491.CrossRefGoogle Scholar
Stokes, S., Thomas, D. S. G. and Washington, R. (1997). Multiple episodes of aridity in southern Africa since the last interglacial period. Nature, 388, 154158.CrossRefGoogle Scholar
Stone, A. E. C. and Thomas, D. S. G. (2013). Casting new light on late Quaternary environmental and palaeohydrological change in the Namib Desert: A review of the application of optically stimulated luminescence in the region. Journal of Arid Environments, 93, 4058.CrossRefGoogle Scholar
Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, K. A., Kromer, B., McCormac, G., van der Plicht, J. and Spurk, M. (1998). INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon, 40, 10411083.CrossRefGoogle Scholar
Sudan, P., Whitmore, G., Uken, R. and Woodbourn, S. (2004). Quaternary evolution of the coastal dunes between Lake Hlabane and Cape St Lucia, KwaZulu-Natal. South African Journal of Geology, 107, 355376.CrossRefGoogle Scholar
Talma, A. S. and Vogel, J. C. (1992). Late Quaternary paleotemperatures derived from a speleothem from Cango Caves, Cape Province, South Africa. Quaternary Research, 37, 203213.CrossRefGoogle Scholar
Thomas, D. S. and Burrough, S. L. (2013). Luminescence-based dune chronologies in southern Africa: Analysis and interpretation of dune database records across the subcontinent. Quaternary International, doi:10.1016/j.quaint.2013.09.008.CrossRefGoogle Scholar
Tooth, S., Brandt, D., Hancox, P. J. and McCarthy, T. S. (2004). Geological controls on alluvial river behaviour: A comparative study of three rivers on the South African Highveld. Journal of African Earth Sciences, 38, 7997.CrossRefGoogle Scholar
Tooth, S., Hancox, P. J., Brandt, D., McCarthy, T. S., Jacobs, Z. and Woodborne, S. (2013). Controls on the genesis, sedimentary architecture, and preservation potential of dryland alluvial successions in stable continental interiors: Insights from the incising Modder River, South Africa. Journal of Sedimentary Research, 83, 541561.CrossRefGoogle Scholar
Tooth, S., McCarthy, T. S., Brandt, D., Hancox, P. J. and Morris, R. (2002). Geological controls on the formation of alluvial meanders and floodplain wetlands: The example of the Klip River, eastern Free State, South Africa. Earth Surface Processes and Landforms, 27, 797815.CrossRefGoogle Scholar
Tribolo, C., Mercier, N. and Valladas, H. (2005). Chronologie des technofaciès Howieson’s Poort et Still Bay (Middle Stone Age, Afrique du Sud): bilan et nouvelles données de la luminescence. Bulletin de la Société préhistorique française, 102, 855866.CrossRefGoogle Scholar
Valladas, H., Wadley, L., Mercier, N., Froget, L., Tribolo, C., Reyss, J. L. and Joron, J. L. (2005). Thermoluminescence dating on burnt lithics from Middle Stone Age layers at Rose Cottage Cave. South African Journal of Science, 101, 169174.Google Scholar
van der Wateren, F. M. and Dunai, T. J. (2001). Late Neogene passive margin denudation history – cosmogenic isotope measurements from the central Namib desert. Global and Planetary Change, 30, 271307.CrossRefGoogle Scholar
Vermeesch, P., Fenton, C. R., Kober, F., Wiggs, G. F. S., Bristow, C. S. and Xu, S. (2010). Sand residence times of one million years in the Namib Sand Sea from cosmogenic nuclides. Nature Geoscience, 3, 862865.CrossRefGoogle Scholar
Vogel, J. C. (2001). Radiometric dates for the Middle Stone Age in South Africa. In Humanity from African Naissance to Coming Millennia, ed. Tobias, P. V., Raath, M. A., Moggi-Cecchi, J. and Doyle, G. A.. Johannesburg: University of the Witwatersrand Press, pp. 261268.Google Scholar
Vogel, J. C., Fuls, A., Visser, E. and Becker, B. (1993). Pretoria calibration curve for short-lived samples, 1930–3350 BC. Radiocarbon, 35, 7385.CrossRefGoogle Scholar
Vrba, E. S. (1975). Some evidence of chronology and palaeoecology of Sterkfontein, Swartkrans and Kromdraai from the fossil Bovidae. Nature, 254, 301304.CrossRefGoogle Scholar
Wadley, L. and Jacobs, Z. (2004). Sibudu Cave, KwaZulu-Natal: Background to the excavations of Middle Stone Age and Iron Age occupations. South African Journal of Science, 100, 145151.Google Scholar
Wadley, L. and Jacobs, Z. (2006). Sibudu Cave: Background to the excavations, stratigraphy and dating. Southern African Humanities, 18, 126.Google Scholar
Wang, Q., Tobias, P. V., Roberts, D. L. and Jacobs, Z. (2008). A re-examination of a human femur found at the Blind River Site, East London, South Africa: Its age, morphology, and breakage pattern. Anthropological Review, 71, 4361.CrossRefGoogle Scholar
Wilde, S. A., Valley, J. W., Peck, W. H. and Graham, C. M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409, 175178.CrossRefGoogle ScholarPubMed
Wintle, A. G. (2010). Future directions of luminescence dating of quartz. Geochronometria, 37, 17.CrossRefGoogle Scholar
Wintle, A. G., Botha, G. A., Li, S. H. and Vogel, J. C. (1995b). Chronological framework for colluviation during the last 110 KYR in Kwazulu-Natal. South African Journal of Science, 91, 134139.Google Scholar
Wintle, A. G., Li, S. H. and Botha, G. A. (1993). Luminescence dating of colluvial deposts from Natal, South Africa. South African Journal of Science, 89, 7782.Google Scholar
Wintle, A. G., Li, S. H., Botha, G. A. and Vogel, J. C. (1995a). Evaluation of luminescence-dating procedures applied to late-Holocene colluvium near St Paul’s Mission, Natal, South Africa. The Holocene, 5, 97102.CrossRefGoogle Scholar
Woodborne, S., Pienaar, M. and Tiley-Nel, S. (2009). Dating the Mapungubwe Hill gold. Journal of African Archaeology, 7, 99105.CrossRefGoogle Scholar
Zhao, J.-X., Yu, K.-F. and Feng, Y.-X. (2009). High-precision 238U–234U–230Th disequilibrium dating of the recent past: A review. Quaternary Geochronology, 4, 423433.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×