Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-08T06:48:21.486Z Has data issue: false hasContentIssue false

3 - A continental-scale perspective on landscape evolution in southern Africa during the Cenozoic

Published online by Cambridge University Press:  05 June 2016

Jasper Knight
Affiliation:
University of the Witwatersrand, Johannesburg
Stefan W. Grab
Affiliation:
University of the Witwatersrand, Johannesburg
Get access

Summary

Abstract

The evolution of southern Africa during the Cenozoic (last 66 Ma) results from the interplay between regional-scale tectonic and climatic processes, and complex geomorphic feedbacks and responses that give rise to variations in preservation and denudation of the land surface. As such, this history of landscape evolution reflects a classic forcing–response model that is typical of many different geomorphological systems. In detail, however, the timescales and feedbacks are poorly known, and the palimpsest nature of land surface features (supported by evidence from radiometric dating) shows that the operation of these processes across southern Africa is not spatially uniform, which has not been previously discussed. The climatic and land surface feedbacks associated with mantle swells and periods of Cenozoic rifting and earlier Mesozoic volcanism are also uncertain. These are important future research challenges.

Type
Chapter
Information
Quaternary Environmental Change in Southern Africa
Physical and Human Dimensions
, pp. 30 - 46
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashwal, L. D. and Burke, K. (1989). African lithospheric structure, volcanism, and topography. Earth and Planetary Science Letters, 96, 814.CrossRefGoogle Scholar
Austermann, J., Kaye, B. T., Mitrovica, J. X. and Huybers, P. (2014). A statistical analysis of the correlation between large igneous provinces and lower mantle seismic structure. Geophysical Journal International 197, 19.CrossRefGoogle Scholar
Beukes, N. J., van Niekerk, H. S. and Gutzmer, J. (2004). Post Gondwana African land surface and pedogenetic ferromanganese deposits on the Witwatersrand at the West Wits gold mine, South Africa. South African Journal of Geology, 102, 6582.Google Scholar
Bierman, P. R., Coppersmith, R., Hanson, K., Neveling, J., Portenga, E. W. and Rood, D. H. (2014). A cosmogenic view of erosion, relief generation, and the age of faulting in southern Africa. GSA Today, 24 (9), 411.CrossRefGoogle Scholar
Botha, G. A. and de Wit, M. J. C. (1996). Post-Gondwanan continental sedimentation, Limpopo region, southeastern Africa. Journal of African Earth Sciences, 23, 163187.CrossRefGoogle Scholar
Botha, G. A. and Partridge, T. C. (2000). Colluvial deposits. In The Cenozoic of Southern Africa, ed. Partridge, T. C. and Maud, R. R.. Oxford: Oxford University Press, pp. 8899.Google Scholar
Braun, J., Guillocheau, F., Robin, C., Baby, G. and Jelsma, H. (2014). Rapid erosion of the Southern African Plateau as it climbs over a mantle superswell. Journal of Geophysical Research: Solid Earth, 119, 60936112.CrossRefGoogle Scholar
Brown, R. W., Summerfield, M. A. and Gleadow, A. J. W. (2002). Denudational history along a transect across the Drakensberg Escarpment of southern Africa derived from apatite fission track thermochronology. Journal of Geophysical Research–Solid Earth, 107, 2350, doi:10.1029/2001JB000745.CrossRefGoogle Scholar
Bumby, A. J. and Guiraud, R. (2005). The geodynamic setting of the Phanerozoic basins of Africa. Journal of African Earth Sciences, 43, 112.CrossRefGoogle Scholar
Burke, K. (1996). The African Plate. South African Journal of Geology, 99, 341409.Google Scholar
Burke, K. and Gunnell, Y. (2008). The African surface: A continental-scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years. Boulder, CO: Geological Society of America, Memoir 201, 66pp.Google Scholar
Burke, K., Steinberger, B., Torsvik, T. H. and Smethurst, M. A. (2008). Plume Generation Zones at the margins of Large Low Shear Velocity Provinces on the core–mantle boundary. Earth and Planetary Science Letters 265, 4960.CrossRefGoogle Scholar
Chadwick, O. A., Roering, J. J., Heimsath, A. M., Levick, S. R., Asner, G. P. and Khomo, L. (2013). Shaping post-orogenic landscapes by climate and chemical weathering. Geology, 41, 11711174.CrossRefGoogle Scholar
Champagnac, J.-D., Valla, P. G. and Herman, F. (2014). Late-Cenozoic relief evolution under evolving climate: A review. Tectonophysics, 614, 4465.CrossRefGoogle Scholar
Compton, J. S. and Wiltshire, J. G. (2009). Terrigenous sediment export from the western margin of South Africa on glacial to interglacial cycles. Marine Geology, 266, 212222.CrossRefGoogle Scholar
Cotterill, F. P. D. and de Wit, M. (2011). Geoecodynamics and the Kalahari epeirogeny: Linking its genomic record, tree of life and palimpsest into a unified narrative of landscape evolution. South African Journal of Geology, 114, 489514.CrossRefGoogle Scholar
Coulthard, T. J. and Van de Wiel, M. J. (2013). Climate, tectonics or morphology: What signals can we see in drainage basin sediment yields? Earth Surface Dynamics, 1, 1327.CrossRefGoogle Scholar
Decker, J. E., Niedermann, S. and de Wit, M. J. (2011). Soil erosion rates in South Africa compared with cosmogenic 3He-based rates of soil production. South African Journal of Geology, 114, 475488.CrossRefGoogle Scholar
Decker, J. E., Niedermann, S. and de Wit, M. J. (2013). Climatically influenced denudation rates of the southern African plateau: Clues to solving a geomorphic paradox. Geomorphology, 190, 4860.CrossRefGoogle Scholar
du Toit, A. L. (1933). Crustal movements as a factor in the geographical evolution of South Africa. South African Geographical Journal, 16, 133.Google Scholar
Erlanger, E. D., Granger, D. E. and Gibbon, R. J. (2012). Rock uplift rates in South Africa from isochron burial dating of fluvial and marine terraces. Geology, 40, 10191022.CrossRefGoogle Scholar
Faniran, A. and Jeje, L. K. (1983). Humid Tropical Geomorphology. New York: Longman, 414pp.Google Scholar
Fleming, A., Summerfield, M. A., Stone, J. O., Fifield, L. K. and Cresswell, R. G. (1999). Denudation rates for the southern Drakensberg escarpment, SE Africa, derived from in-situ-produced cosmogenic 36Cl: initial results. Journal of the Geological Society, 156, 209212.CrossRefGoogle Scholar
Flowers, R. M. and Schoene, B. (2010). (U-Th)/He thermochronometry constraints on unroofing of the eastern Kaapvaal craton and significance for uplift of the southern African Plateau. Geology, 38, 827830.CrossRefGoogle Scholar
Foster, D. A. and Gleadow, A. J. W. (1992). The morphotectonic evolution of rift-margin mountains in central Kenya: Constraints from apatite fission-track thermochronology. Earth and Planetary Science Letters, 113, 157171.CrossRefGoogle Scholar
Gilchrist, A. R. and Summerfield, M. A. (1990). Differential denudation and flexural isostasy in formation of rifted-margin upwarps. Nature, 346, 739742.CrossRefGoogle Scholar
Giresse, P. (2005). Mesozoic-Cenozoic history of the Congo Basin. Journal of African Earth Science, 43, 301315.CrossRefGoogle Scholar
Grenfell, M. C., Ellery, W. N. and Grenfell, S. E. (2009). Valley morphology and sediment cascades within a wetland system in the KwaZulu-Natal Drakensberg Foothills, Eastern South Africa. Catena, 78, 2035.CrossRefGoogle Scholar
Guillocheau, F., Rouby, D., Robin, C., Helm, C., Rolland, N., Le Carlier de Veslud, C. and Braun, J. (2012). Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: A new method applied to the Namibia–South Africa margin. Basin Research, 24, 330.CrossRefGoogle Scholar
Gunnell, Y. (2003). Radiometric ages of laterites and constraints on long-term denudation rates in West Africa. Geology, 31, 131134.2.0.CO;2>CrossRefGoogle Scholar
Gurnis, M., Mitrovica, J. X., Ritsema, J. and van Heijst, H. J. (2000). Constraining mantle density structure using geological evidence of surface uplift rates: The case of the African superplume. Geochemistry, Geophysics, Geosystems, 1, 1020, doi:10.1029/1999GC000035.CrossRefGoogle Scholar
Haddon, I. G. and McCarthy, T. S. (2005). The Mesozoic-Cenozoic interior sag basins of Central Africa: The Late-Cretaceous-Cenozoic Kalahari and Okavango basins. Journal of African Earth Sciences, 43, 316333.CrossRefGoogle Scholar
James, D. E., Fouch, M. J., VanDecar, J. C., van der Lee, S. and Kaapvaal Seismic Group. (2001). Tectospheric structure beneath southern Africa. Geophysical Research Letters, 28, 24852488.CrossRefGoogle Scholar
Jung, G., Prange, M. and Schulz, M. (2014). Uplift of Africa as a potential cause from Neogene intensification of the Benguela upwelling system. Nature Geoscience, 7, 741747.CrossRefGoogle Scholar
Knight, J. and Harrison, S. (2013). The impacts of climate change on terrestrial Earth surface systems. Nature Climate Change, 3, 2429.CrossRefGoogle Scholar
Kounov, A., Nierdermann, S., de Wit, M. J., Codilean, A. T., Viola, G., Andreoli, M. and Christl, M. (2014). Cosmogenic 21Ne and 10Be reveal a more than 2 Ma alluvial fan flanking the Cape Mountains, South Africa. South African Journal of Geology, 118, 129144.CrossRefGoogle Scholar
Kounov, A., Niedermann, S., de Wit, M.J., Viola, G., Andreoli, M. and Erzinger, J. (2007). Present denudation rates at selected sections of the South African escarpment and the elevated continental interior based on cosmogenic 3He and 21Ne. South African Journal of Geology, 110, 235248.CrossRefGoogle Scholar
Kounov, A., Viola, G., Dunkl, I. and Frimmel, H. E. (2013). South African perspectives on the long-term morpho-tectonic evolution of cratonic interiors. Tectonophysics, 601, 177191.CrossRefGoogle Scholar
Lavier, L.L., Steckler, M.S. and Brigaud, F. (2001). Climatic and tectonic control on the Cenozoic evolution of the West African margin. Marine Geology, 178, 6380.CrossRefGoogle Scholar
Lindenmaier, F., Miller, R., Fenner, J., Christelis, G., Dill, H. G., Himmelsbach, T., Kaufhold, S., Lohe, C., Quinger, M., Schildknecht, F., Symons, G., Walzer, A. and van Wyk, B. (2014). Structure and genesis of the Cubango Megafan in northern Namibia: Implications for its hydrogeology. Hydrogeology Journal, 22, 13071328.CrossRefGoogle Scholar
Lithgow-Bertelloni, C. and Silver, P. G. (1998). Dynamic topography, plate driving forces and the African superswell. Nature, 395, 269272.CrossRefGoogle Scholar
Macgregor, D. S. (2010). Understanding African and Brazilian margin climate, topography and drainage systems, implications for predicting deepwater reservoirs and source rock burial history. AAPG, Search and Discovery, Article 10270, 38pp.Google Scholar
Marker, M. E. and Holmes, P. J. (1999). Laterisation on limestones of the Teritary Wankoe Formation and its relationship to the African Surface, Southern Cape, South Africa. Catena, 38, 121.CrossRefGoogle Scholar
Marker, M. E., McFarlane, M. J. and Wormald, R. J. (2002). A laterite profile near Albertinia, Southern Cape, South Africa: Its significance in the evolution of the African Surface. South African Journal of Geology, 105, 6774.CrossRefGoogle Scholar
Matmon, A., Bierman, P. and Enzel, Y. (2002). Pattern and tempo of great escarpment erosion. Geology, 30, 11351138.2.0.CO;2>CrossRefGoogle Scholar
McCarthy, T. S. (2013). The Okavango delta and its place in the geomorphological evolution of Southern Africa. South African Journal of Geology, 116, 154.CrossRefGoogle Scholar
Miller, R. McG., Pickford, M. and Senut, B. (2010). The geology, palaeontology and evolution of the Etosha pan, Namibia: Implications for terminal Kalahari deposition. South African Journal of Geology, 113, 307334.CrossRefGoogle Scholar
Moon, B. P. and Dardis, G. F. (1988). Introduction. In The Geomorphology of Southern Africa, ed. Moon, B. P. and Dardis, G. F.. Johannesburg: Southern Book Publishers, pp. 111.Google Scholar
Moore, A. E. (1999). A reappraisal of epeirogenic flexure axes in southern Africa. South African Journal of Geology, 102, 363376.Google Scholar
Moore, A. and Blenkinsop, T. (2006). Scarp retreat versus pinned drainage divide in the formation of the Drakensberg escarpment, southern Africa. South African Journal of Geology, 109, 599610.CrossRefGoogle Scholar
Moore, A., Blenkinsop, T. and Cotterill, F. (2009). Southern African topography and erosion history: Plumes or plate tectonics? Terra Nova, 21, 310315.CrossRefGoogle Scholar
Moore, A., Blenkinsop, T. and Cotterill, F. P. D. (2012). Dynamic evolution of the Zambezi-Limpopo watershed, central Zimbabwe. South African Journal of Geology, 115, 551560.CrossRefGoogle Scholar
Moore, A. E. and Larkin, P. A. (2001). Drainage evolution in south-central Africa since the breakup of Gondwana. South African Journal of Geology, 104, 4768.CrossRefGoogle Scholar
Moucha, R. and Forte, A. M. (2011). Changes in African topography driven by mantle convection. Nature Geoscience, 4, 707712.CrossRefGoogle Scholar
Mulyukova, E., Steinberger, B., Dabrowski, M. and Sobolev, S. V. (2015). Survival of LLSVPs for billions of years in a vigorously convecting mantle: Replenishment and destruction of chemical anomaly. Journal of Geophysical Research–Solid Earth, 120, 38243847.CrossRefGoogle Scholar
Partridge, T. C., Bond, G. C., Hartnady, C. J. H., deMenocal, P. B. and Ruddiman, W. F. (1995). Climatic effects of Late Neogene tectonism and volcanism. In Paleoclimate and Evolution, with Emphasis on Human Origins, ed. Vrba, E. S., Denton, G. H., Partridge, T. C. and Burckle, L. H.. New Haven, CT: Yale University Press, pp. 823.Google Scholar
Partridge, T. C. and Maud, R. R. (1987). Geomorphic evolution of southern Africa since the Mesozoic. South African Journal of Geology, 90, 179208.Google Scholar
Partridge, T. C. and Maud, R. R. (2000). Macro-scale geomorphic evolution of southern Africa. In The Cenozoic of Southern Africa, ed Partridge, T. C. and Maud, R. R.. Oxford: Oxford University Press, pp. 318.Google Scholar
Paton, D. A. (2006). Influence of crustal heterogeneity on normal fault dimensions and evolution: Southern South Africa extensional system. Journal of Structural Geology, 28, 868886.CrossRefGoogle Scholar
Phillips, J. D. (2009). Changes, perturbations, and responses in geomorphic systems. Progress in Physical Geography, 33, 1730.CrossRefGoogle Scholar
Pickford, M., Eisenmann, V. and Senut, B. (1999). Timing of landscape development and calcrete genesis in northern Namaqualand, South Africa. South African Journal of Science, 95, 357359.Google Scholar
Podgorski, J. E., Green, A. G., Kgotlhang, L., Kinzelbach, W. K. H., Kalscheuer, T., Auken, E. and Ngwisanyi, T. (2013). Paleo-megalake and paleo-megafan in southern Africa. Geology, 41, 11551158.CrossRefGoogle Scholar
Podgorski, J. E., Green, A. G., Kalscheuer, T., Kinzelbach, W. K. H., Horstmeyer, H., Maurer, H., Rabenstein, L., Doetsch, J., Auken, E., Ngwisanyi, T., Tshoso, G., Jaba, B. C., Ntibinyane, O. and Laletsang, K. (2015). Integrated interpretation of helicopter and ground-based geophysical data recorded within the Okavango Delta, Botswana. Journal of Applied Geophysics, 114, 5267.CrossRefGoogle Scholar
Prendergast, M. D. (2013). Landscape evolution, regolith formation and nickel laterite development in the northern part of the Great Dyke, Zimbabwe. South African Journal of Geology, 116, 219240.CrossRefGoogle Scholar
Reyment, R. A. and Dingle, R. V. (1987). Palaeogeography of Africa during the Cretaceous period. Palaeogeography, Palaeoclimatology, Palaeoecology, 59, 93116.CrossRefGoogle Scholar
Roller, S., Hornung, J., Hinderer, M. and Ssemmanda, I. (2010). Middle Miocene to Pleistocene sedimentary record of rift evolution in the southern Albert Rift (Uganda). International Journal of Earth Science, 99, 16431661.CrossRefGoogle Scholar
Roters, B. and Henrich, R. (2010). The middle to late Miocene climatic development of Southwest Africa derived from the sedimentological record of ODP Site 1085A. International Journal of Earth Science (Geol Rundsch), 99, 459471.CrossRefGoogle Scholar
Said, A., Moder, C., Clark, S. and Ghorbal, B. (2015). Cretaceous–Cenozoic sedimentary budgets of the Southern Mozambique Basin: Implications for uplift history of the South African plateau. Journal of African Earth Sciences, 109, 110.CrossRefGoogle Scholar
Sell, B., Ovtcharova, M., Guex, J., Bartolini, A., Jourdan, F., Spangenberg, J. E., Vicente, J.-C. and Schaltegger, U. (2014). Evaluating the temporal link between the Karoo LIP and climatic-biologic events of the Toarcian Stage with high-precision U-Pb geochronology. Earth and Planetary Science Letters 408, 4856.CrossRefGoogle Scholar
Sepulchre, P., Ramstein, G., Fluteau, F., Schuster, M., Tiercelin, J.-J. and Brunet, M. (2006). Tectonic uplift and eastern Africa aridification. Science, 313, 14191423.CrossRefGoogle ScholarPubMed
Senut, B., Pickford, M. and Ségalen, L. (2009). Neogene desertification of Africa. Comptes Rendus Geoscience, 341, 591602.CrossRefGoogle Scholar
Séranne, M. and Anka, Z. (2005). South Atlantic continental margins of Africa: A comparison of the tectonic vs climate interplay on the evolution of equatorial west Africa and SW Africa margins. Journal of African Earth Sciences, 43, 283300.CrossRefGoogle Scholar
Steinberger, B. and Torsvik, T. H. (2012). A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces. Geochemistry, Geophysics, Geosystems 13, Q01W09, doi:10.1029/2011GC003808.CrossRefGoogle Scholar
Tinker, J., de Wit, M. and Brown, R. (2008). Mesozoic exhumation of the southern Cape, South Africa, quantified using apatite fission track thermochronology. Tectonophysics, 455, 7793.CrossRefGoogle Scholar
Tooth, S. and McCarthy, T. S. (2007). Wetlands in drylands: Geomorphological and sedimentological characteristics, with emphasis on examples from southern Africa. Progress in Physical Geography, 31, 341.CrossRefGoogle Scholar
Torsvik, T. H. and Cocks, L. R. M. (2013). Gondwana from top to base in space and time. Gondwana Research 24, 9991030.CrossRefGoogle Scholar
van der Beek, P., Summerfield, M. A., Braun, J., Brown, R. W. and Fleming, A. (2002). Modeling postbreakup landscape development and denudational history across the southeast African (Drakensberg Escarpment) margin. Journal of Geophysical Research–Solid Earth, 107, 2351, doi:10.1029/2001JB000744.CrossRefGoogle Scholar
von Elderfeldt, K. (2012). System theory in geomorphology. Challenges, Epistemological Consequences and Practical Implications. Dordrecht: Springer Theses, 139pp.CrossRefGoogle Scholar
Watkeys, M. K. W. (2006). Gondwana break-up: A South African perspective. In The Geology of South Africa, ed. Johnson, M. R., Anhaeusser, C. R. and Thomas, R. J.. Pretoria: Geological Society of South Africa/Council for Geoscience, pp. 531539.Google Scholar
Wintle, A. G., Botha, G. A., Li, S. H. and Vogel, J. C. (1995). Chronological framework for colluviation during the last 110 ka in Natal. South African Journal of Science, 91, 134139.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×