Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-10-04T19:08:13.296Z Has data issue: false hasContentIssue false

1 - The context of Quaternary environmental change in southern Africa

Published online by Cambridge University Press:  05 June 2016

Jasper Knight
Affiliation:
University of the Witwatersrand, Johannesburg
Stefan W. Grab
Affiliation:
University of the Witwatersrand, Johannesburg
Get access

Summary

Abstract

Climate changes and tectonic processes throughout the Cenozoic, and earlier, provide the context for landscape and environmental change in southern Africa during the Quaternary. Changing land surface properties and resource availability, including rock types, topography, soils, ecosystems and drainage patterns, have exerted a strong impact on the processes and patterns of human evolution, technological innovation and behaviour over millennial timescales. The southern African landscape seen today, and the preserved imprint of its past human activities, resulted from the interplay between climate, tectonics and geomorphology over lengthy Cenozoic timescales.

Type
Chapter
Information
Quaternary Environmental Change in Southern Africa
Physical and Human Dimensions
, pp. 1 - 17
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avery, D. M. (2001). The Plio-Pleistocene vegetation and climate of Sterkfontein and Swartkrans, South Africa, based on micromammals. Journal of Human Evolution, 41, 113132.CrossRefGoogle ScholarPubMed
Beaumont, P. B. and Vogel, J. C. (2006). On a timescale for the past million years of human history in central South Africa. South African Journal of Science, 102, 217229.Google Scholar
Bierman, P. R. and Caffee, M. (2001). Slow rates of rock surface erosion and sediment production across the Namib Desert and escarpment, southern Africa. American Journal of Science, 301, 326358.CrossRefGoogle Scholar
Binns, J. A. (1997). People, environment and development in Africa. South African Geographical Journal, 79, 1318.CrossRefGoogle Scholar
Bishop, P. (2007). Long-term landscape evolution: Linking tectonics and surface processes. Earth Surface Processes and Landforms, 32, 329365.CrossRefGoogle Scholar
Blumel, W. D. and Eitel, B. (1994). Tertiary calcic sediment covers and calcretes in Namibia – origin and geomorphic significance. Zeitschrift für Geomorphologie, N.F., 38, 385403.CrossRefGoogle Scholar
Braun, J., Guillocheau, F., Robin, C., Baby, G. and Jelsma, H. (2014). Rapid erosion of the Southern African Plateau as it climbs over a mantle superswell. Journal of Geophysical Research, 119, 60936112, doi:10.1002/2014JB010998.CrossRefGoogle Scholar
Chadwick, O. A., Roering, J. J., Heinsath, A. M., Levick, S. R., Asner, G. P. and Khomo, L. (2013). Shaping post-orogenic landscapes by climate and chemical weathering. Geology, 41, 11711174.CrossRefGoogle Scholar
Cole, M. J., Bailey, R. M. and New, M. G. (2014). Tracking sustainable development with a national barometer for South Africa using a downscaled “safe and just space” framework. Proceedings of the National Academy of Sciences, 111, E4399E4408.CrossRefGoogle ScholarPubMed
Dardis, G. F. (1990). Late Holocene erosion and colluvium deposition in Swaziland. Geology, 18, 934937.2.3.CO;2>CrossRefGoogle Scholar
Decker, J. E., Niedermann, S. and de Wit, M. J. (2011). Climatically influenced denudation rates of the southern African plateau: Clues to solving a geomorphic paradox. Geomorphology, 190, 4860.CrossRefGoogle Scholar
Decker, J. E., Niedermann, S. and de Wit, M. J. (2011). Soil erosion rates in South Africa compared with cosmogenic 3He-based rates of soil production. South African Journal of Geology, 114, 475488.CrossRefGoogle Scholar
de Wit, M. (2007). The Kalahari Epeirogeny and climate change: Differentiating cause and effect from core to space. South African Journal of Geology, 110, 367392.CrossRefGoogle Scholar
Diekmann, B., Fälker, M. and Kuhn, G. (2003). Environmental history of the south-eastern South Atlantic since the Middle Miocene: Evidence from the sedimentological records of ODP Sites 1088 and 1092. Sedimentology, 50, 511529.CrossRefGoogle Scholar
Dirks, P. H. G. M. and Berger, L. R. (2013). Hominin-bearing caves and landscape dynamics in the Cradle of Humankind, South Africa. Journal of African Earth Sciences, 78, 109131.CrossRefGoogle Scholar
du Toit, A. L. (1954). Geology of South Africa, 3rd edition. Edinburgh: Oliver and Boyd, 611pp.Google Scholar
Dupont, L. M. (2006). Late Pliocene vegetation and climate in Namibia (southern Africa) derived from palynology of ODP Site 1082. Geochemistry, Geophysics, Geosystems, 7, Q05007, doi:10.1029/2005GC001208.CrossRefGoogle Scholar
Dupont, L. M., Rommerskirchen, F., Mollenhauer, G. and Schefuß, E. (2013). Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C4 plants. Earth and Planetary Science Letters, 375, 408417.CrossRefGoogle Scholar
Erlanger, E. D., Granger, D. E. and Gibbon, R. J. (2012). Rock uplift rates in South Africa from isochron burial dating of fluvial and marine terraces. Geology, 40, 10191022.CrossRefGoogle Scholar
Fleming, A., Summerfield, M. A., Stone, J. O., Fifield, L. K. and Cresswell, R. G. (1999). Denudation rates for the southern Drakensberg escarpment, SE Africa, derived from in-situ-produced cosmogenic 36Cl: Initial results. Journal of the Geological Society, 156, 209212.CrossRefGoogle Scholar
Franz-Odendaal, T. A., Lee-Thorp, J. A. and Chinsamy, A. (2002). New evidence for the lack of C4 grassland expansions during the early Pliocene at Langebaanweg, South Africa. Paleobiology, 28, 378388.2.0.CO;2>CrossRefGoogle Scholar
Garcin, Y., Vincens, A., Williamson, D., Buchet, G. and Guiot, J. (2007). Abrupt resumption of the African Monsoon at the Younger Dryas-Holocene climatic transition. Quaternary Science Reviews, 26, 690704.CrossRefGoogle Scholar
Gibbard, P. and Cohen, K. M. (2008). Global chronostratigraphical correlation table for the last 2.7 million years. Episodes, 31, 243247.CrossRefGoogle Scholar
Grab, S. W. and Knight, J. (eds) (2015). Landscapes and Landforms of South Africa. Switzerland: Springer, 187pp.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J. and Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235, 11561167.CrossRefGoogle ScholarPubMed
Holmes, P. J. and Meadows, M. E. (eds) (2012). Southern African Geomorphology: Recent Trends and New Directions. Bloemfontein: Sun Press, 431pp.CrossRefGoogle Scholar
Holmgren, K., Lee-Thorp, J. A., Cooper, G. R. J., Lundblad, K., Partridge, T. C., Scott, L., Sithaldeen, R., Talma, A. S. and Tyson, P. D. (2003). Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quaternary Science Reviews, 22, 23112326.CrossRefGoogle Scholar
Hunter, D. R., Johnson, M. R., Anhaeusser, C. R. and Thomas, R. J. (2006). Introduction. In The Geology of South Africa, ed. Johnson, M. R., Anhaeusser, C. R. and Thomas, R. J.. Johannesburg/Pretoria: GSSA/Council for Geoscience, pp. 17.Google Scholar
Itambi, A. C., von Dobeneck, T., Mulitza, S., Bickert, T. and Heslop, D. (2009). Millennial-scale northwest African droughts related to Heinrich events and Dansgaard-Oeschger cycles: Evidence in marine sediments from offshore Senegal. Paleoceanography, 24, PA1205, doi:10.1029/2007PA001570.CrossRefGoogle Scholar
Jung, G., Prange, M. and Schulz, M. (2014). Uplift of Africa as a potential cause for Neogene intensification of the Benguela upwelling system. Nature Geoscience, 7, 741747.CrossRefGoogle Scholar
King, L. C. (1963). South African Scenery: A Textbook of Geomorphology. Edinburgh: Oliver & Boyd, 308pp.Google Scholar
Lavier, L. L., Steckler, M. S. and Brigaud, F. (2001). Climatic and tectonic control on the Cenozoic evolution of the West African margin. Marine Geology, 178, 6380.CrossRefGoogle Scholar
McCarthy, T. and Rubidge, B. (2005). The Story of Earth & Life: A Southern African Perspective on a 4.6-billion-year Journey. Cape Town: Struik Publishers, 333pp.Google Scholar
McGee, D., Donohoe, A., Marshall, J. and Ferreira, D. (2014). Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth and Planetary Science Letters, 390, 6979.CrossRefGoogle Scholar
Meadows, M. E. (2014). Recent methodological advances in Quaternary palaeoecological proxies. Progress in Physical Geography, 38, 807817.CrossRefGoogle Scholar
Moon, B. P. (1990). Rock mass strength as a control on slope development: Evidence from southern Africa. South African Geographical Journal, 72, 5053.CrossRefGoogle Scholar
Moon, B. P. and Dardis, G. F. (eds) (1998). The Geomorphology of Southern Africa. Johannesburg: Southern Book Publishers, 320pp.Google Scholar
Moore, A., Blenkinsop, T. and Cotterill, F. (2009). Southern African topography and erosion history: Plumes or plate tectonics? Terra Nova, 21, 310315.CrossRefGoogle Scholar
Niang, I., Ruppel, O. C., Abdrabo, M. A., Essel, A., Lennard, C., Padgham, J. and Urquhart, P. (2014). Africa. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Barros, V. R., Field, C. B., Dokken, D. J., Mastrandrea, M. D., Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R. and White, L. L.. Cambridge: Cambridge University Press, pp. 11991265.Google Scholar
Partridge, T. C. (1998). Of diamonds, dinosaurs and diastrophism: 150 million years of landscape evolution in southern Africa. South African Journal of Geology, 101, 167184.Google Scholar
Partridge, T. C., Bond, G. C., Hartnady, C. J. H., deMenocal, P. B. and Ruddiman, W. F. (1995). Climatic effects of Late Neogene tectonism and volcanism. In Paleoclimate and Evolution, with Emphasis on Human Origins, ed. Vrba, E. S., Denton, G. H., Partridge, T. C. and Burckle, L. H.. New Haven, CT: Yale University Press, pp. 823.Google Scholar
Partridge, T. C., Dollar, E. S. J., Moolman, J. and Dollar, L. H. (2010). The geomorphic provinces of South Africa, Lesotho and Swaziland: A physiographic subdivision for earth and environmental scientists. Transactions of the Royal Society of South Africa, 65, 147.CrossRefGoogle Scholar
Partridge, T. C. and Maud, R. R. (1987). Geomorphic evolution of southern Africa since the Mesozoic. South African Journal of Geology, 90, 179208.Google Scholar
Partridge, T. C. and Maud, R. R. (2000a). Macro-scale geomorphic evolution of southern Africa. In The Cenozoic of Southern Africa, ed Partridge, T. C. and Maud, R. R.. Oxford: Oxford University Press, pp. 318.Google Scholar
Partridge, T. C. and Maud, R. R. (2000b). The Cenozoic of Southern Africa. Oxford: Oxford University Press, 406pp.Google Scholar
Phillips, D., Kiniets, G. B., Biddulph, M. G. and Madav, M. K. (2000). Cenozoic volcanism. In The Cenozoic of Southern Africa, ed. Partridge, T. C. and Maud, R. R.. Oxford: Oxford University Press, pp. 182197.Google Scholar
Pickford, M., Senut, B., Mocke, H., Mourer-Chauviré, C., Rage, J.-C. and Mein, P. (2014). Eocene aridity in southwestern Africa: Timing of onset and biological consequences, Transactions of the Royal Society of South Africa, 69, 139144.CrossRefGoogle Scholar
Portenga, E. W. and Bierman, P. R. (2011). Understanding Earth’s eroding surface with 10Be. GSA Today, 21 (8), 410.CrossRefGoogle Scholar
Reed, K. E. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289322.CrossRefGoogle ScholarPubMed
Roelandt, C., Godderis, Y., Bonnet, M. P. and Sondag, F. (2011). Coupled modeling of biospheric and chemical weathering processes at the continental scale. Global Biogeochemical Cycles, 24, GB2004, doi:10.1029/2008GB003420.Google Scholar
Roters, B. and Henrich, R. (2010). The middle to late Miocene climatic development of Southwest Africa derived from the sedimentological record of ODP Site 1085A. International Journal of Earth Science (Geol Rundsch), 99, 459471.CrossRefGoogle Scholar
Scott, L., Neumann, F. H., Brook, G. A., Bousman, C. B., Norström, E. and Metwally, A. A. (2012). Terrestrial fossil-pollen evidence of climate change during the last 26 thousand years in Southern Africa. Quaternary Science Reviews, 32, 100118.CrossRefGoogle Scholar
Ségalen, L., Renard, M., Lee-Thorp, J. A., Emmanuel, L., Le Callonnec, L., de Rafélis, M., Senut, B., Pickford, M. and Melice, J.-L. (2006). Neogene climate change and emergence of C4 grasses in the Namib, southwestern Africa, as reflected in ratite 13C and 18O. Earth and Planetary Science Letters, 244, 725734.CrossRefGoogle Scholar
Senut, B., Pickford, M. and Ségalen, L. (2009). Neogene desertification of Africa. Comptes Rendus Geoscience, 341, 591602.CrossRefGoogle Scholar
Stroeven, A. P., Fabel, D., Hättestrand, C. and Harbor, J. (2002). A relict landscape in the centre of Fennoscandian glaciation: Cosmogenic radionuclide evidence of tors preserved through multiple glacial cycles. Geomorphology, 44, 145154.CrossRefGoogle Scholar
Stuut, J.-B. W., Prins, M. A., Schneider, R. R., Weltje, G. J., Jansen, J. H. F. and Postma, G. (2002). A 300 kyr record of aridity and wind strength in Southwestern Africa: Inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic Ocean. Marine Geology, 180, 221233.CrossRefGoogle Scholar
Tinker, J., de Wit, M. and Brown, R. (2008). Mesozoic exhumation of the southern Cape, South Africa, quantified using apatite fission track thermochronology. Tectonophysics, 455, 7793.CrossRefGoogle Scholar
Vrba, E. S., Denton, G. H., Partridge, T. C. and Burckle, L. H. (eds) (1995). Paleoclimate and Evolution, with Emphasis on Human Origins. New Haven, CT: Yale University Press, 547pp.Google Scholar
Watson, A., Price-Williams, D. and Goudie, A. S. (1984). The palaeoenviromental interpretation of colluvial sediments and palaeosols of the Late Pleistocene Hypothermal in southern Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 45, 225249.CrossRefGoogle Scholar
West, S., Jansen, J. H. F. and Stuub, J.-B. (2004). Surface water conditions in the Northern Benguela Region (SE Atlantic) during the last 450 ky reconstructed from assemblages of planktonic foraminifera. Marine Micropaleontology, 51, 321344.CrossRefGoogle Scholar
Ziervogel, G., New, M., Archer van Garderen, E., Midgley, G., Taylor, A., Hamann, R., Stuart-Hill, S., Myers, J. and Warburton, M. (2014). Climate change impacts and adaptation in South Africa. WIREs Climate Change, 5, 605620.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×