Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-12-03T17:57:21.672Z Has data issue: false hasContentIssue false

17 - Regular Systems, Ubiquity and Diophantine Approximation

Published online by Cambridge University Press:  20 August 2009

Gisbert Wüstholz
Affiliation:
Swiss Federal University (ETH), Zürich
Get access

Summary

Introduction

Approximation of real and complex numbers by rationals and algebraic numbers appeared first in papers by Dirichlet, Liouville and Hermite on Diophantine approximation and the theory of transcendental numbers. During the first three decades of the 20th century, E. Borel and A. Khintchine introduced the so-called metric (or measure theoretic) approach in which one considers approximation to any number which does not belong to an exceptional null set (i.e., a set of measure zero). Neglecting such exceptional sets can lead to strikingly simple and general theorems, such as Khintchine's theorem (see below). The exceptional sets can be analysed more deeply by using Hausdorff dimension, which can distinguish between different null sets.

This article gives an account of results, methods and ideas connected with Lebesgue measure and Hausdorff dimension of such exceptional sets. We will be concerned mainly with the lower bound of the Hausdorff dimension. Although determining the correct lower bound for the Hausdorff dimension of a set is often (though by no means always) harder than determining the correct upper bound, recent developments indicate that for many problems, the correct lower bound can be established using information associated with the upper bound. There are some exceptions to this principle. For example, convergence in the Khintchine–Groshev type theorem (for terminology see Bernik & Dodson 1999) for the parabola is related to the upper bound which was proved in Bernik (1979). Nevertheless the divergence case is still unsettled.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×