Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T10:33:03.357Z Has data issue: false hasContentIssue false

23 - On the emergence of consciousness

from Section 6 - Consciousness

Published online by Cambridge University Press:  01 March 2011

Hugo Lagercrantz
Affiliation:
Karolinska Institutet, Stockholm
M. A. Hanson
Affiliation:
Southampton General Hospital
Laura R. Ment
Affiliation:
Yale University, Connecticut
Donald M. Peebles
Affiliation:
University College London
Get access

Summary

Introduction

One of the most important challenges of this century is to understand the neural bases of consciousness from the molecular to the highest cognitive level, in other words, to bridge “the hump from neurochemistry to subjective feeling” (Searle, 2000). Yet, due to the complexity of the human brain, it is not anticipated that a single concept, method, or experimental finding will ever give the decisive answer. On the other hand, studying the brain from early fetal stages in utero up to the adult state may offer fruitful insights to understand human consciousness. The approach is in itself rather new. It is, indeed, quite surprising to note that William James regarded the infant as unaware of its body, of itself (the I) and of the outside world, i.e., “the blooming buzzing confusion.” Sigmund Freud also claimed that children up to 5 years of age are rarely aware of the motives and reasons for their behavior and that the bulk of their mental life is unconscious. Lev Vygotsky was the first psychologist in modern time who thought that a baby's view of the world was nearly as complex and highly structured as the adult one (see Gopnik et al., 1999; Zelazo, 2004). Also, at variance with the commonly accepted view that consciousness corresponds to a unique and irreducible system, developmental data argue for a progressive, stepwise, growth of the diverse components of adult consciousness (Zelazo, 2004).

Type
Chapter
Information
The Newborn Brain
Neuroscience and Clinical Applications
, pp. 377 - 394
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4, 165–78.CrossRefGoogle ScholarPubMed
Anisfield, M., Turkewitz Rose, S. A., Rosenberg, F. R., et al. (2001). No compelling evidence that newborns imitate oral gestures. Infancy, 2, 111–22.CrossRefGoogle Scholar
Baars, B. J. (2002). The conscious access hypothesis: origins and recent evidence. Trends in Cognitive Sciences, 6, 47–52.CrossRefGoogle ScholarPubMed
Baars, B. J., Ramsoy, T. Z. & Laureys, S. (2003). Brain, conscious experience and the observing self. Trends in Neurosciences, 26, 671–5.CrossRefGoogle ScholarPubMed
Bacher, L. F. & Smotherman, W. P. (2004). Spontaneous eye blinking in human infants: a review. Developmental Psychobiology, 44, 95–102.CrossRefGoogle ScholarPubMed
Bartocci, M., Winberg, J., Ruggiero, C., et al. (2000). Activation of olfactory cortex in newborn infants after odor stimulation: a functional near-infrared spectroscopy study. Pediatric Research, 48, 18–23.CrossRefGoogle ScholarPubMed
Bartocci, M., Winberg, J., Papendieck, G., et al. (2001). Cerebral hemodynamic response to unpleasant odors in the preterm newborn measured by near-infrared spectroscopy. Pediatric Research, 50, 324–30.CrossRefGoogle ScholarPubMed
Bartocci, M., Bergqvist, L. L., Lagercrantz, H., et al. (2006). Pain activates cortical areas in the preterm newborn brain. Pain, 122, 109–17.CrossRefGoogle ScholarPubMed
Bassi, L., Ricci, D., Volzone, A., et al. (2008). Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain, 131, 573–82.CrossRefGoogle ScholarPubMed
Bauer, P. J. (2006). Constructing a past in infancy: a neuro-developmental account. Trends in Cognitive Sciences, 10, 175–81.CrossRefGoogle ScholarPubMed
Boly, M., Phillips, C., Tshibanda, L., et al. (2008). Intrinsic brain activity in altered states of consciousness. How conscious is the default mode of brain function?Annals of the New York Academy of Sciences, 1129, 119–29.CrossRefGoogle ScholarPubMed
Born, P., Leth, H., Miranda, M. J., et al. (1998). Visual activation in infants and young children studied by functional magnetic resonance imaging. Pediatric Research, 44, 578–83.CrossRefGoogle ScholarPubMed
Bourgeois, J. P. (1997). Synaptogenesis, heterochrony and epigenesis in the mammalian neocortex. Acta Paediatrica Supplement, 422, 27–33.CrossRefGoogle ScholarPubMed
Britto, J., Tannahill, D. & Keynes, R. (2002). A critical role for sonic hedgehog signaling in the early expansion of the developing brain. Nature Neuroscience, 5, 103–10.CrossRefGoogle ScholarPubMed
Burkhalter, A. (1993). Development of forward and feedback connections between areas V1 and V2 of human visual cortex. Cerebral Cortex, 3, 476–87.CrossRefGoogle ScholarPubMed
Changeux, J. P. (2006). The Ferrier Lecture 1998. The molecular biology of consciousness investigated with genetically modified mice. Philosophical Transactions of the Royal Society of London, Series B Biological Sciences, 361, 2239–59.CrossRefGoogle ScholarPubMed
Changeux, J-P. & Dehaene, S. (2008). The neuronal workspace model: conscious processing and learning. In Learning Theory and Behavior, ed. Menzel, R.. Oxford: Elsevier, pp. 729–58.Google Scholar
Changeux, J. P., Courrege, P. & Danchin, A. (1973). A theory of the epigenesis of neuronal networks by selective stabilization of synapses. Proceedings of the National Academy of Sciences of the USA, 70, 2974–8.CrossRefGoogle ScholarPubMed
Chugani, H. T., Phelps, M. E. & Mazziotta, J. C. (1987). Positron emission tomography study of human brain functional development. Annals of Neurology, 22, 487–97.CrossRefGoogle ScholarPubMed
Cohen, G., Han, Z. Y., Grailhe, R., et al. (2002). Beta 2 nicotinic acetylcholine receptor subunit modulates protective responses to stress: A receptor basis for sleep-disordered breathing after nicotine exposure. Proceedings of the National Academy of Sciences of the USA, 99, 13272–7.CrossRefGoogle ScholarPubMed
Cohen, G., Roux, J. C., Grailhe, R., et al. (2005). Perinatal exposure to nicotine causes deficits associated with a loss of nicotinic receptor function. Proceedings of the National Academy of Sciences of the USA, 102, 3817–21.CrossRefGoogle ScholarPubMed
Crick, F. C. & Koch, C. (2005). What is the function of the claustrum?Philosophical Transactions of the Royal Society of London, Series B Biological Sciences, 360, 1271–9.CrossRefGoogle ScholarPubMed
Davidson, R. J. & Fox, N. A. (1989). Frontal brain asymmetry predicts infants' response to maternal separation. Journal of Abnormal Psychology, 98, 127–31.CrossRefGoogle ScholarPubMed
DeCasper, A. J. & Fifer, W. P. (1980). Of human bonding: newborns prefer their mothers' voices. Science, 208, 1174–6.CrossRefGoogle ScholarPubMed
Decety, J. & Jackson, P. L. (2004). The functional architecture of human empathy. Behavioral and Cognitive Neuroscience Reviews, 3, 71–100.CrossRefGoogle ScholarPubMed
Dehaene, S. & Changeux, J. P. (2005). Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness. PLoS Biology, 3, e141.CrossRefGoogle ScholarPubMed
Dehaene, S., Kerszberg, M. & Changeux, J. P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences of the USA, 95, 14529–34.CrossRefGoogle ScholarPubMed
Dehaene, S., Changeux, J. P., Naccache, L., et al. (2006). Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends in Cognitive Sciences, 10, 204–11.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., Hertz-Pannier, L. & Dubois, J. (2006). Nature and nurture in language acquisition: anatomical and functional brain-imaging studies in infants. Trends in Neurosciences, 29, 367–73.CrossRefGoogle ScholarPubMed
Denton, D. (2005). The Primordial Emotions. Oxford: Oxford University Press.Google Scholar
Desmond, M. M., Franklin, R. R., Vallvona, C., et al. (1963). The clinical behavior of the newly born. I. The term baby. Journal of Pediatrics, 62, 307–25.CrossRefGoogle Scholar
Dubois, J., Hertz-Pannier, L., Dehaene-Lambertz, G., et al. (2006). Assessment of the early organization and maturation of infants' cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. NeuroImage, 30, 1121–32.CrossRefGoogle ScholarPubMed
Dubois, J., Benders, M., Borradori-Tolsa, C., et al. (2008). Primary cortical folding in the human newborn: an early marker of later functional development. Brain, 131, 2028–41.CrossRefGoogle ScholarPubMed
Fernandez, M., Blass, E. M., Hernandez-Reif, M., et al. (2003). Sucrose attenuates a negative electroencephalographic response to an aversive stimulus for newborns. Journal of Developmental and Behavioral Pediatrics, 24, 261–6.CrossRefGoogle Scholar
Fitzgerald, M. (2005). The development of nociceptive circuits. Nature Reviews Neuroscience, 6, 507–20.CrossRefGoogle ScholarPubMed
Fransson, P., Skiold, B., Horsch, S., et al. (2007). Resting-state networks in the infant brain. Proceedings of the National Academy of Sciences of the USA, 104, 15531–6.CrossRefGoogle ScholarPubMed
Giganti, F., Ficca, G., Cioni, G., et al. (2006). Spontaneous awakenings in preterm and term infants assessed throughout 24-h video-recordings. Early Human Development, 82, 435–40.CrossRefGoogle ScholarPubMed
Glover, V. F. N. (1999). Fetal pain: implications for research and practice. British Journal of Obstetrics and Gynaecology, 106, 881–6.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. (1988). The cortical dopamine system: role in memory and cognition. Advances in Pharmacology, 42, 707–11.CrossRefGoogle Scholar
Gopnik, A., Melzoff, A. & Kuhl, P. (1999). How Babies Think. London: Phoenix.Google Scholar
Gowland, P. & Fulford, J. (2004). Initial experiences of performing fetal fMRI. Experimental Neurology, 190 (Suppl. 1), S22–7.CrossRefGoogle ScholarPubMed
Granon, S., Faure, P. & Changeux, J. P. (2003). Executive and social behaviors under nicotinic receptor regulation. Proceedings of the National Academy of Sciences of the USA, 100, 9596–601.CrossRefGoogle ScholarPubMed
Gray, L. & Philbin, M. K. (2004). Effects of the neonatal intensive care unit on auditory attention and distraction. Clinics in Perinatology, 31, 243–60.CrossRefGoogle ScholarPubMed
Halasz, P. (1998). Hierarchy of micro-arousals and the microstructure of sleep. Neurophysiologie Clinique, 28, 461–75.CrossRefGoogle Scholar
Hepper, P. G. (1996). Fetal memory: does it exist? What does it do?Acta Paediatrica Supplement, 416, 16–20.CrossRefGoogle Scholar
Hobson, J. (1999). Consciousness. New York: Scientific American Library.Google Scholar
Hofer, M. A. (2002). Unexplained infant crying: an evolutionary perspective. Acta Paediatrica, 91, 491–6.CrossRefGoogle Scholar
Huotilainen, M. (2006). Magnetoencephalography of the newborn brain. Seminars in Fetal and Neonatal Medicine, 11, 437–43.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (2002). Neural Plasticity. Cambridge, MA: Harvard University Press.Google Scholar
Irestedt, L., Dahlin, I., Hertzberg, T., et al. (1989). Adenosine concentration in umbilical cord blood of newborn infants after vaginal delivery and cesarean section. Pediatric Research, 26, 106–8.CrossRefGoogle ScholarPubMed
Jacobson, S. W. (1979). Matching behaviour in the young infant. Child Development, 1979, 766–74.Google Scholar
Johnson, M. H. (2001). Functional brain development in humans. Nature Reviews Neuroscience, 2, 475–83.CrossRefGoogle ScholarPubMed
Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6, 766–74.CrossRefGoogle ScholarPubMed
Jones, N. A., Field, T., Fox, N. A., et al. (1997). EEG activation in 1-month-old infants of depressed mothers. Development and Psychopathology, 9, 491–505.CrossRefGoogle ScholarPubMed
Kapellou, O., Counsell, S. J., Kennea, N., et al. (2006). Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Medicine, 3, e265.CrossRefGoogle ScholarPubMed
Koch, C. (2004). The Quest for Consciousness: A Neurobiological Approach. Colorado: Eaglewood.Google Scholar
Kostovic, I. & Jovanov-Milosevic, N. (2006). The development of cerebral connections during the first 20–45 weeks' gestation. Seminars in Fetal and Neonatal Medicine, 11, 415–22.CrossRefGoogle Scholar
Kuhl, P. K. (2004). Early language acquisition: cracking the speech code. Nature Reviews Neuroscience, 5, 831–43.CrossRefGoogle ScholarPubMed
Kurjak, A., Stanojevic, M., Azumendi, G., et al. (2005). The potential of four-dimensional (4D) ultrasonography in the assessment of fetal awareness. Journal of Perinatal Medicine, 33, 46–53.CrossRefGoogle ScholarPubMed
Lagercrantz, H. (1996). Stress, arousal, and gene activation at birth. News in Physiological Sciences, 11, 214–18.Google Scholar
Lagercrantz, H. (2007). The emergence of the mind: a borderline of human viability?Acta Paediatrica, 96, 327–8.CrossRefGoogle ScholarPubMed
Lagercrantz, H. & Slotkin, T. A. (1986). The “stress” of being born. Scientific American, 254, 100–7.CrossRefGoogle ScholarPubMed
Laureys, S., Faymonville, M. E., Tiege, X., et al. (2004). Brain function in the vegetative state. Advances in Experimental Medicine and Biology, 550, 229–38.CrossRefGoogle ScholarPubMed
Laureys Sa, G. S. (2004). Imagine imaging neural activity in crying infants and in their caring parents. Behavioral and Brain Sciences, 27, 465–7.CrossRefGoogle Scholar
Leader, L. R., Stevens, A. D. & Lumbers, E. R. (1988). Measurement of fetal responses to vibroacoustic stimuli. Habituation in fetal sheep. Biology of the Neonate, 53, 73–85.CrossRefGoogle ScholarPubMed
Lecanuet, J. P., Fifer, W. P., Krasneqor, N. A., et al. (1995). Fetal Development, a Psychobiological Perspective. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Lee, S. J., Ralston, H. J., Drey, E. A., et al. (2005). Fetal pain: a systematic multidisciplinary review of the evidence. JAMA: The Journal of American Medical Association, 294, 947–54.CrossRefGoogle Scholar
Lena, C., Popa, D., Grailhe, R., et al. (2004). Beta2-containing nicotinic receptors contribute to the organization of sleep and regulate putative micro-arousals in mice. Journal of Neuroscience, 24, 5711–18.CrossRefGoogle ScholarPubMed
Letinic, K., Zoncu, R. & Rakic, P. (2002). Origin of GABAergic neurons in the human neocortex. Nature, 417, 645–9.CrossRefGoogle ScholarPubMed
Llinas, R. R. & Steriade, M. (2006). Bursting of thalamic neurons and states of vigilance. Journal of Neurophysiology, 95, 3297–308.CrossRefGoogle ScholarPubMed
Lowery, C. L., Eswaran, H., Murphy, P. et al. (2006). Fetal magnetoencephalography. Seminars in Fetal and Neonatal Medicine, 11, 430–6.CrossRefGoogle ScholarPubMed
Lowery, C. L., Hardman, M. P., Manning, N., et al. (2007). Neurodevelopmental changes of fetal pain. Seminars in Perinatology, 31, 275–82.CrossRefGoogle ScholarPubMed
Majerus, S., Gill-Thwaites, H., Andrews, K., et al. (2005). Behavioral evaluation of consciousness in severe brain damage. Progress in Brain Research, 150, 397–413.CrossRefGoogle ScholarPubMed
Marlow, N., Wolke, D., Bracewell, M. A., et al. (2005). Neurologic and developmental disability at six years of age after extremely preterm birth. New England Journal of Medicine, 352, 9–19.CrossRefGoogle ScholarPubMed
McMillen, I. C., Kok, J. S., Adamson, T. M., et al. (1991). Development of circadian sleep-wake rhythms in preterm and full-term infants. Pediatric Research, 29, 381–4.CrossRefGoogle ScholarPubMed
Meek, J. H., Firbank, M., Elwell, C. E., et al. (1998). Regional hemodynamic responses to visual stimulation in awake infants. Pediatric Research, 43, 840–3.CrossRefGoogle ScholarPubMed
Meister, M., Wong, R. O., Baylor, D. A., et al. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science, 252, 939–43.CrossRefGoogle ScholarPubMed
Mellor, D. J., Diesch, T. J., Gunn, A. J., et al. (2005). The importance of “awareness” for understanding fetal pain. Brain Research Brain Research Reviews, 49, 455–71.CrossRefGoogle ScholarPubMed
Meltzoff, A. N. & Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198, 75–8.CrossRefGoogle ScholarPubMed
Merker, B. (2007). Consciousness without a cerebral cortex: a challenge for neuroscience and medicine. Behavioral and Brain Sciences, 30, 63–81, discussion 81–134.CrossRefGoogle Scholar
Morin, A. (2001). The split-brain debate revisited: On the importance of language and self-recognition for right hemispheric consciousness. Journal of Mind and Behavior, 22, 107–18.Google Scholar
Morrongillo, B. A., Fenwick, K. D. & Chana, G. (1998). Crossmodel learning in newborn infants. Infant Behavior and Development, 21, 543–53.Google Scholar
Nazzi, T., Bertoncini, J. & Mehler, J. (1998). Language discrimination by newborns: toward an understanding of the role of rhythm. Journal of Experimental Psychology Human Perception and Performance, 24, 756–66.CrossRefGoogle ScholarPubMed
Paus, T. (2000). Functional anatomy of arousal and attention systems in the human brain. Progress in Brain Research, 126, 65–77.CrossRefGoogle ScholarPubMed
Pena, M., Maki, A., Kovacic, D., et al. (2003). Sounds and silence: an optical topography study of language recognition at birth. Proceedings of the National Academy of Sciences of the USA, 100, 11702–5.CrossRefGoogle ScholarPubMed
Prechtl, H. F. (1985). Ultrasound studies of human fetal behaviour. Early Human Development, 12, 91–8.CrossRefGoogle ScholarPubMed
Preissl, H., Lowery, C. L. & Eswaran, H. (2004). Fetal magnetoencephalography: current progress and trends. Experimental Neurology, 190 (Suppl. 1), S28–36.CrossRefGoogle ScholarPubMed
Purpura, D. P. (1982). Normal and abnormal development of cerebral cortex in man. Neurosciences Research Program Bulletin, 20, 569–77.Google ScholarPubMed
Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241, 170–6.CrossRefGoogle ScholarPubMed
Rigatto, H., Moore, M. & Cates, D. (1986). Fetal breathing and behavior measured through a double-wall Plexiglas window in sheep. Journal of Applied Physiology, 61, 160–4.CrossRefGoogle Scholar
Rochat, P. (2003). Five levels of self-awareness as they unfold early in life. Consciousness and Cognition, 12, 717–31.CrossRefGoogle ScholarPubMed
Roffwarg, H. P., Muzio, J. N. & Dement, W. C. (1966). Ontogenetic development of the human sleep-dream cycle. Science, 152, 604–19.CrossRefGoogle ScholarPubMed
Schaal, B., Hummel, T. & Soussignan, R. (2004). Olfaction in the fetal and premature infant: functional status and clinical implications. Clinics in Perinatology, 31, 261–85, vi–vii.CrossRefGoogle ScholarPubMed
Schwab, M., Schmidt, K., Witte, H., et al. (2000). Investigation of nonlinear ECoG changes during spontaneous sleep state changes and cortical arousal in fetal sheep. Cerebral Cortex, 10, 142–8.CrossRefGoogle ScholarPubMed
Searle, J. R. (2000). Consciousness. Annual Review of Neuroscience, 23, 557–78.CrossRefGoogle ScholarPubMed
Seghier, M. L., Lazeyras, F. & Huppi, P. S. (2006). Functional MRI of the newborn. Seminars in Fetal and Neonatal Medicine, 11, 479–88.CrossRefGoogle ScholarPubMed
Sjölander, S. (1999). How Animals Handle Reality. New York: Plenum.Google Scholar
Slater, R., Cantarella, A., Gallella, S., et al. (2006). Cortical pain responses in human infants. Journal of Neuroscience, 26, 3662–6.CrossRefGoogle ScholarPubMed
Smotherman, W. P. (2002). Classical conditioning in the rat fetus: temporal characteristics and behavioral correlates of the conditioned response. Developmental Psychobiology, 40, 116–30.CrossRefGoogle ScholarPubMed
Soltis, J. (2004). The signal functions of early infant crying. Behavioral and Brain Sciences, 27, 443–58, discussion 459–90.Google ScholarPubMed
Sowell, E. R., Thompson, P. M., Leonard, C. M., et al. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. Journal of Neuroscience, 24, 8223–31.CrossRefGoogle ScholarPubMed
Stefanski, M., Schulze, K., Bateman, D., et al. (1984). A scoring system for states of sleep and wakefulness in term and preterm infants. Pediatric Research, 18, 58–62.Google ScholarPubMed
Terzano, M. G., Parrino, L., Boselli, M., et al. (2000). CAP components and EEG synchronization in the first 3 sleep cycles. Clinical Neurophysiology, 111, 283–90.CrossRefGoogle ScholarPubMed
Thinus-Blanc, C., Save, E., Poucet, B., et al. (1996). Effects of parietal cortex lesions on spatial problem solving in the rat. Behavioral and Brain Sciences, 81, 115–21.Google ScholarPubMed
Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation. Trends in Neurosciences, 29, 148–59.CrossRefGoogle ScholarPubMed
Tononi, G. & Edelman, G. M. (1998). Consciousness and complexity. Science, 282, 1846–51.CrossRefGoogle ScholarPubMed
Trevarthen, C. & Aitken, K. J. (2001). Infant intersubjectivity: research, theory, and clinical applications. Journal of Child Psychology and Psychiatry and Allied Disciplines, 42, 3–48.CrossRefGoogle ScholarPubMed
Tronick, E. Z. (1989). Emotions and emotional communication in infants. American Psychologist, 44, 112–19.CrossRefGoogle ScholarPubMed
Vanhatalo, S. & Kaila, K. (2006). Development of neonatal EEG activity: from phenomenology to physiology. Seminars in Fetal and Neonatal Medicine, 11, 471–8.CrossRefGoogle ScholarPubMed
Vanhatalo, S. & Lauronen, L. (2006). Neonatal SEP – back to bedside with basic science. Seminars in Fetal and Neonatal Medicine, 11, 464–70.CrossRefGoogle ScholarPubMed
Varendi, H., Porter, R. H. & Winberg, J. (2002). The effect of labor on olfactory exposure learning within the first postnatal hour. Behavioral Neuroscience, 116, 206–11.CrossRefGoogle ScholarPubMed
Zeifman, D., Delaney, S. & Blass, E. M. (1996). Sweet tast, looking and calm in 2- and 4-week-old infants: The eyes hve it. Developmental Psychology, 32, 1090–9.CrossRefGoogle Scholar
Zelazo, P. D. (2004). The development of conscious control in childhood. Trends in Cognitive Sciences, 8, 12–17.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×