Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T10:52:46.951Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  14 June 2019

Charles Bouveyron
Affiliation:
Université Côte d’Azur
Gilles Celeux
Affiliation:
Inria Saclay Île-de-France
T. Brendan Murphy
Affiliation:
University College Dublin
Adrian E. Raftery
Affiliation:
University of Washington
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerson, G. A., and Fu, K. S. 1970. On state estimation in switching environments. IEEE Transactions on Automatic Control, 15, 1017. 108Google Scholar
Adanson, M. 1757. Histoire Naturelle du Sénégal. Coquillages. Avec la relation abregée d’un voyage fait en ce pays, pendant les années 1749, 50, 51, 52 et 53. Paris: Bauche. 2CrossRefGoogle Scholar
Adanson, M. 1763. Familles de Plantes. Paris: Vincent. 2CrossRefGoogle Scholar
Agresti, A. 2002. Categorical Data Analysis. 2nd edn. New York: Wiley. 163, 166, 185, 191Google Scholar
Ahlquist, J. S., and Breunig, C. 2012. Model-based clustering and typologies in the social sciences. Political Analysis, 20, 92–112. 77, 78Google Scholar
Airoldi, E. M., Blei, D. M., Fienberg, S. E., Goldberg, A., Xing, E. P., and Zheng, A. X. 2007. Statistical Network Analysis: Models, Issues and New Directions. Lecture Notes in Computer Science, vol. 4503. Berlin: Springer. 294Google Scholar
Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P. 2008. Mixed-membership stochastic blockmodels. Journal of Machine Learning Research, 9, 19812014. 304, 306, 350Google Scholar
Aitchison, J., and Aitken, C. G. G. 1976. Multivariate binary discrimination by the kernel method. Biometrika, 63, 413420. 123, 169Google Scholar
Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723. 133CrossRefGoogle Scholar
Allman, E. S., Matias, C., and Rhodes, J. A. 2009. Identifiability of parameters in latent structure models with many observed variables. The Annals of Statistics, 37(6A), 30993132. 167CrossRefGoogle Scholar
Ambroise, C., Grasseau, G., Hoebeke, M., Latouche, P., Miele, V., Picard, F., and LAPACK authors. 2013. mixer: Random graph clustering. R package version 1.7. 297, 300, 301Google Scholar
Anderlucci, L. 2012. Comparing Different Approaches for Clustering Categorical Data. Ph.D. thesis, Università di Bologna. 172Google Scholar
Anderlucci, L., and Hennig, C. 2012. Comparing different approaches for clustering categorical data. Quaderni di Statistica, 14, 14. 167, 172Google Scholar
Anderson, E. 1935. The irises of the Gaspe peninsula. Bulletin of the American Iris Society, 59, 25. 5, 154Google Scholar
Anderson, T. W. 2003. An Introduction to Multivariate Statistical Analysis. 3rd edn. New York: Wiley. 110Google Scholar
Andrews, J. L., and McNicholas, P. D. 2011a. Extending mixtures of multivariate t-factor analyzers. Statistics and Computing, 21(3), 361373. 257, 261Google Scholar
Andrews, J. L., and McNicholas, P. D. 2011b. Mixtures of modified t-factor analyzers for model-based clustering, classification, and discriminant analysis. Journal of Statistical Planning and Inference, 141(4), 14791486. 261Google Scholar
Andrews, J. L., and McNicholas, P. D. 2012. Model-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributions: the tEIGEN family. Statistics and Computing, 22(5), 10211029. 261Google Scholar
Andrews, J. L., McNicholas, P. D., and Subedi, S. 2011. Model-based classification via mixtures of multivariate t-distributions. Computational Statistics and Data Analysis, 55(1), 520529. 261CrossRefGoogle Scholar
Andrews, J. L., Wickins, J. R., Boers, N. M., and McNicholas, P. D. 2015. teigen: Model-based clustering and classification with the multivariate t-distribution. R package version 2.1.0. 261Google Scholar
Andrews, J. L., Wickins, J. R., Boers, N. M., and McNicholas, P. D. 2018. teigen: An R package for model-based clustering and classification via the multivariate t distribution. Journal of Statistical Software, 83(7), 132. 261Google Scholar
Arellano-Valle, R. B., and Genton, M. G. 2005. On fundamental skew distributions. Journal of Multivariate Analysis, 96, 93116. 267Google Scholar
Arellano-Valle, R. B., and Genton, M. G. 2010. Multivariate extended skew-t distributions and related families. Metron, 68, 201234. 271Google Scholar
Azzalini, A. 2014. The Skew-Normal and Related Families. Institute of Mathematical Statistics Monographs. Cambridge University Press. 267Google Scholar
Azzalini, A. 2015. The R package sn: The Skew-Normal and Skew-t distributions. R package version 1.3-0. 331Google Scholar
Azzalini, A., and Bowman, A. W. 1990. A look at some data on the Old Faithful geyser. Journal of the Royal Statistical Society. Series C (Applied Statistics), 39, 357365. 7Google Scholar
Azzalini, A., and Capitanio, A. 1999. Statistical applications of the multivariate skew normal distribution. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 61(3), 579602. 267, 269Google Scholar
Azzalini, A., and Capitanio, A. 2003. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 65, 367389. 271Google Scholar
Azzalini, A., and Dalla Valle, A. 1996. The multivariate skew-normal distribution. Biometrika, 83(4), 715726. 267, 269CrossRefGoogle Scholar
Azzalini, A., Browne, R. P., Genton, M. G., and McNicholas, P. D. 2016. On nomenclature for, and the relative merits of, two formulations of skew distributions. Statistics and Probability Letters, 110, 201206. 267, 270Google Scholar
Baek, J., McLachlan, G. J., and Flack, L. 2009. Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualisation of high-dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(7), 12981309. 238, 241, 246, 257Google Scholar
Banerjee, A., Dhillon, I., Ghosh, J., Merugu, S., and Modha, D. S. 2007. A generalized maximum entropy approach to Bregman co-clustering and matrix approximation. Journal of Machine Learning Research, 8, 19191986. 374Google Scholar
Banfield, J. D., and Raftery, A. E. 1989. Model-based Gaussian and non-Gaussian clustering. Technical Report 186. Department of Statistics, University of Washington. 76Google Scholar
Banfield, J. D., and Raftery, A. E. 1992. Ice floe identification in satellite images using mathematical morphology and clustering about principal curves. Journal of the American Statistical Association, 8, 716. 382Google Scholar
Banfield, J. D., and Raftery, A. E. 1993. Model-based Gaussian and non-Gaussian clustering. Biometrics, 49, 803821. 6, 20, 34, 76, 105, 237Google Scholar
Barker, M., and Rayens, W. 2003. Partial least squares for discrimination. Journal of Chemometrics, 17(3), 166173. 233CrossRefGoogle Scholar
Barndorff-Nielsen, O., Kent, J., and Sørensen, M. 1982. Normal variance-mean mixtures and z distributions. International Statistical Review, 50, 145159. 283Google Scholar
Bashir, S., and Carter, E. 2005. High breakdown mixture discriminant analysis. Journal of Multivariate Analysis, 93(1), 102111. 161Google Scholar
Baudry, J. P., Raftery, A. E., Celeux, G., Lo, K., and Gottardo, R. 2010. Combining mixture components for clustering. Journal of Computational and Graphical Statistics, 19, 332353. 100, 101, 103, 108Google Scholar
Baudry, J.-P., Maugis, C., and Michel, B. 2012. Slope heuristics: overview and implementation. Statistics and Computing, 22, 455470. 194CrossRefGoogle Scholar
Bellman, R. 1957 . Dynamic Programming. Princeton University Press. 217, 221Google Scholar
Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D. 2009. mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software, 32(6), 129. 339, 340Google Scholar
Bensmail, H., and Celeux, G. 1996. Regularized Gaussian discriminant analysis through eigenvalue decomposition. Journal of the American Statistical Association, 91, 17431748. 6, 115, 238Google Scholar
Bensmail, H., and Meulman, J. J. 2003. Model-based clustering with noise: Bayesian inference and estimation. Journal of Classification, 20, 4976. 107Google Scholar
Bensmail, H., Celeux, G., Raftery, A. E., and Robert, C. P. 1997. Inference in model-based cluster analysis. Statistics and Computing, 7, 110. 24, 77, 107Google Scholar
Bensmail, H., Golek, J., Moody, M. M., Semmes, J. O., and Haoudi, A. 2005. A novel approach to clustering proteomics data using Bayesian fast Fourier transform. Bioinformatics, 21, 22102224. 107CrossRefGoogle ScholarPubMed
Benzecri, J.-P. 1973. L’analyse des données. Paris: Dunod. 172Google Scholar
Bergé, L., Bouveyron, C., and Girard, S. 2016. HDclassif: High Dimensional Supervised Classification and Clustering. R package version 2.0.2. 12Google Scholar
Bergé, L., Bouveyron, C., Corneli, M., and Latouche, P. 2019. The latent topic block model for the co-clustering of textual interaction data. Computational Statistics and Data Analysis, in press. 383Google Scholar
Bhattacharya, S., and McNicholas, P. D. 2014. A LASSO-penalized BIC for mixture model selection. Advances in Data Analysis and Classification, 8, 4561. 107Google Scholar
Bickel, P. J., and Chen, A. 2009. A nonparametric view of network models and Newman-Girvan and other modularities. Proceedings of the National Academy of Sciences, 106(50), 21068– 21073. 329CrossRefGoogle ScholarPubMed
Bickel, P. J., and Doksum, K. A. 1981. An analysis of transformations revisited. Journal of the American Statistical Association, 76, 296311. 279CrossRefGoogle Scholar
Bickel, P. J., Chen, A., and Levina, E. 2011. The method of moments and degree distributions for network models. Annals of Statistics, 39(5), 22802301. 329Google Scholar
Biernacki, C., Celeux, G., and Govaert, G. 1999. An improvement of the NEC criterion for assessing the number of clusters in a mixture model. Pattern Recognition Letters, 20, 267– 272. 77CrossRefGoogle Scholar
Biernacki, C., Celeux, G., and Govaert, G. 2000. Assessing a mixture model for clustering with the integrated complete likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 719725. 54, 55, 172, 173Google Scholar
Biernacki, C., Celeux, G., and Govaert, G. 2003. Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Computational Statistics and Data Analysis, 41, 561575. 31, 36, 37, 38, 175Google Scholar
Biernacki, C., Celeux, G., Govaert, G., and Langrognet, F. 2006. Model-based cluster and discriminant analysis with the Mixmod software. Computational Statistics and Data Analysis, 51, 587600. 198Google Scholar
Biernacki, C., Celeux, G., and Govaert, G. 2010. Exact and Monte Carlo calculations of integrated likelihoods for the latent class model. Journal of Statistical Planning and Inference, 140(11), 29913002. 174CrossRefGoogle Scholar
Binder, D. A. 1978. Bayesian cluster analysis. Biometrika, 65, 3138. 76Google Scholar
Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Springer. 111, 334, 336, 350Google Scholar
Blaesild, P., and Jensen, J. L. 1981. Multivariate distributions of hyperbolic type. Pages 45–66 of: Taillie, C., Patil, G. P., and Baldessari, B. A. (eds.), Statistical Distributions in Scientific Work: Volume 4 — Models, Structures, and Characterizations. Dordrecht: Springer Netherlands. 284Google Scholar
Blashfeld, R. K., and Aldenderfer, M. S. 1988. The methods and problems of cluster analysis. Chap. 14, pages 447–474 of: Nesselroade, J. R., and Cattell, R. B. (eds.), Handbook of Multivariate Experimental Psychology. New York: Plenum Press. 3Google Scholar
Blei, D. M. 2012. Probabilistic topic models. Communications of the ACM, 55(4), 7784. 365, 382Google Scholar
Blei, D. M., and Lafferty, J. D. 2005. Correlated topic models. Pages 147–154 of: Proceedings of the 18th International Conference on Neural Information Processing Systems. NIPS’05. Cambridge, MA, USA: MIT Press. 382Google Scholar
Blei, D. M., and Lafferty, J. D. 2006. Dynamic topic models. Pages 113–120 of: Proceedings of the 23rd International Conference on Machine Learning. ICML’06. New York, NY, USA: ACM. 382Google Scholar
Blei, D. M., Ng, A. Y., and Jordan, M. I. 2003. Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 9931022. 304, 322, 364, 366Google Scholar
Bock, H.-H. 1986. Loglinear models and entropy clustering methods for qualitative data. Pages 18–26 of: Classification as a tool of research. Proceedings of the 9th Annual Conference of the Gesellschaft für Klassifikation. North Holland. 166, 198Google Scholar
Boser, B., Guyon, I. M., and Vapnik, V. 1992. A training algorithm for optimal margin classifiers. Pages 144–152 of: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. COLT’92. New York, NY, USA: ACM. 5Google Scholar
Bouchard, G., and Celeux, G. 2006. Selection of generative model in classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 544564. 133, 140, 141Google Scholar
Bouchard, G., and Triggs, B. 2004. The tradeoff between generative and discriminative classifiers. Pages 721–729 of: 16th IASC International Symposium on Computational Statistics (COMPSTAT’04). 111Google Scholar
Bouveyron, C. 2014. Adaptive mixture discriminant analysis for supervised learning with unobserved classes. Journal of Classification, 31(1), 4984. 157, 158, 159, 160Google Scholar
Bouveyron, C., and Brunet, C. 2011. On the estimation of the latent discriminative subspace in the Fisher-EM algorithm. Journal de la Société Française de Statistique, 152(3), 98115. 253Google Scholar
Bouveyron, C., and Brunet, C. 2012a. Discriminative variable selection for clustering with the sparse Fisher-EM algorithm. Tech. rept. Preprint HAL 00685183. Laboratoire SAMM, Université Paris 1 Panthéon-Sorbonne. 254, 255, 256Google Scholar
Bouveyron, C., and Brunet, C. 2012b. Simultaneous model-based clustering and visualization in the Fisher discriminative subspace. Statistics and Computing, 22(1), 301324. 251, 252, 253CrossRefGoogle Scholar
Bouveyron, C., and Brunet, C. 2012c. Theoretical and practical considerations on the convergence properties of the Fisher-EM algorithm. Journal of Multivariate Analysis, 109, 2941. 253CrossRefGoogle Scholar
Bouveyron, C., and Brunet-Saumard, C. 2014. Model-based clustering of high-dimensional data: A review. Computational Statistics and Data Analysis, 71, 5278. 257Google Scholar
Bouveyron, C., and Girard, S. 2009. Robust supervised classification with mixture models: Learning from data with uncertain labels. Pattern Recognition, 42(11), 26492658. 150, 151, 156Google Scholar
Bouveyron, C., and Jacques, J. 2011. Model-based clustering of time series in group-specific functional subspaces. Advances in Data Analysis and Classification, 5(4), 281300. 353Google Scholar
Bouveyron, C., Girard, S., and Schmid, C. 2007a. High-dimensional data clustering. Computational Statistics and Data Analysis, 52(1), 502519. 247, 249, 353, 362Google Scholar
Bouveyron, C., Girard, S., and Schmid, C. 2007b. High dimensional discriminant analysis. Communications in Statistics: Theory and Methods, 36(14), 26072623. 247, 362Google Scholar
Bouveyron, C., Celeux, G., and Girard, S. 2011. Intrinsic dimension estimation by maximum likelihood in isotropic probabilistic PCA. Pattern Recognition Letters, 32(14), 17061713. 249CrossRefGoogle Scholar
Bouveyron, C., Côme, E., and Jacques, J. 2015. The discriminative functional mixture model for a comparative analysis of bike sharing systems. Annals of Applied Statistics, 9(4), 17261760. 10, 165, 353, 356Google Scholar
Bouveyron, C., Bozzi, L., Jacques, J., and Jollois, F.-X. 2018a. The functional latent block model for the co-clustering of electricity consumption curves. Journal of the Royal Statistical Society. Series C (Applied Statistics), 897–915. 382, 383Google Scholar
Bouveyron, C., Latouche, P., and Zreik, R. 2018b. The stochastic topic block model for the clustering of networks with textual edges. Statistics and Computing, 28, 1131. 321, 382CrossRefGoogle Scholar
Box, G. E. P., and Cox, D. R. 1964. An analysis of transformations. (with Discussion). Journal of the Royal Statistical Society. Series B (Methodological), 26, 211252. 278Google Scholar
Boyles, R. A. 1983. On the convergence of the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 45, 4750. 23Google Scholar
Branco, M. D., and Dey, D. K. 2001. A general class of multivariate skew-elliptical distributions. Journal of Multivariate Analysis, 79(1), 99113. 271Google Scholar
Brand, M. 1999. Structure discovery in conditional probability models via an entropic prior and parameter extinction. Neural Computation, 11, 11551182. 107Google Scholar
Brault, V., and Channarond, A. 2016. Fast and consistent algorithm for the latent block model. arXiv preprint arXiv:1610.09005. 383Google Scholar
Brault, V., and Lomet, A. 2015. Methods for co-clustering: A review. Journal de la Société Française de Statistique, 156, 2751. 374Google Scholar
Breiman, L. 2001. Random forests. Machine Learning, 45, 532. 109Google Scholar
Breiman, L., Friedman, J., Ohlsen, R., and Stone, C. 1984. Classification and Regression Trees. New York: Wadsworth. 109Google Scholar
Bretagnolle, V. 2007. Personal communication. Source: Museum. 123Google Scholar
Brinkman, R. R., Gasparetto, M., Lee, S.-J. J., Ribickas, A. J., Perkins, J., Janssen, W., Smiley, R., and Smith, C. 2007. High-content flow cytometry and temporal data analysis for defining a cellular signature of graft-versus-host disease. Biology of Blood and Marrow Transplantation, 13, 691700. 259Google Scholar
Brodley, C., and Friedl, M. 1999. Identifying mislabeled training data. Journal of Artificial Intelligence Research, 11, 131167. 146CrossRefGoogle Scholar
Browne, R. P., and McNicholas, P. D. 2015. A mixture of generalized hyperbolic distributions. Canadian Journal of Statistics, 43(2), 176198. 283Google Scholar
Bruneau, P., Gelgon, M., and Picarougne, F. 2010. Parsimonious reduction of Gaussian mixture models with a variational-Bayes approach. Pattern Recognition, 43, 850858. 108CrossRefGoogle Scholar
Butts, C. T., Handcock, M. S., and Hunter, D. R. 2014. network: Classes for Relational Data. Irvine, CA. R package version 1.10.2. 292Google Scholar
Byar, D. P., and Green, S. B. 1980. The choice of treatment for cancer patients based on covariate information: application to prostate cancer. Bulletin du Cancer, 67, 477490. 187Google Scholar
Byers, S. D., and Raftery, A. E. 1998. Nearest neighbor clutter removal for estimating features in spatial point processes. Journal of the American Statistical Association, 93, 577584. 82, 106Google Scholar
Campbell, J. G., Fraley, C., Murtagh, F., and Raftery, A. E. 1997. Linear flaw detection in woven textiles using model-based clustering. Pattern Recognition Letters, 18, 15391548. 53Google Scholar
Campbell, J. G., Fraley, C., Stanford, D. C., Murtagh, F., and Raftery, A. E. 1999. Model-based methods for real-time textile fault detection. International Journal of Imaging Systems and Technology, 10, 339346. 53Google Scholar
Carreira-Perpiñán, M. Á., and Renals, S. 2000. Practical identifiability of finite mixtures of multivariate Bernoulli distributions. Neural Computation, 12(1), 141152. 167Google Scholar
Carrington, P. J., Scott, J., and Wasserman, S. 2005. Models and Methods in Social Network Analysis. Cambridge University Press. 294Google Scholar
Carvalho, A. X., and Tanner, M. A. 2007. Modelling nonlinear count time series with local mixtures of Poisson autoregressions. Computational Statistics and Data Analysis, 51(11), 52665294. 350Google Scholar
Cattell, R. B. 1944. A note on correlation clusters and cluster search methods. Psychometrika, 9, 169184. 2Google Scholar
Cattell, R. B. 1966. The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 145276. 249Google Scholar
Celeux, G., and Diebolt, J. 1985. Stochastic versions of the EM algorithm. Computational Statistics Quarterly, 2, 7382. 377Google Scholar
Celeux, G., and Govaert, G. 1991. Clustering criteria for discrete data and latent class models. Journal of Classification, 8(2), 157176. 168, 172Google Scholar
Celeux, G., and Govaert, G. 1992. A classification EM algorithm for clustering and two stochastic versions. Computational Statistics and Data Analysis, 14, 315332. 34Google Scholar
Celeux, G., and Govaert, G. 1993. Comparison of the mixture and the classification maximum likelihood in cluster analysis. Journal of Statistical Computation and Simulation, 47, 127146. 34Google Scholar
Celeux, G., and Govaert, G. 1995. Gaussian parsimonious clustering models. Pattern Recognition, 28, 781793. 25, 76, 171, 237, 248Google Scholar
Celeux, G., and Mkhadri, A. 1992. Discrete regularized discriminant analysis. Statistics and Computing, 2(3), 143151. 6Google Scholar
Celeux, G., and Robert, C. 1993. Une histoire de discrétisation (with discussion). Revue de Modulad, 11, 742. 186Google Scholar
Celeux, G., and Soromenho, G. 1996. An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13(2), 195212. 77Google Scholar
Celeux, G., Hurn, M., and Robert, C. P. 2000. Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical Association, 95, 957970. 107, 183Google Scholar
Celeux, G., Chrétien, S., Forbes, F., and Mkhadri, A. 2001. A component-wise EM algorithm for mixtures. Journal of Computational and Graphical Statistics, 10, 697712. 200Google Scholar
Celeux, G., Martin, O., and Lavergne, C. 2005. Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments. Statistical Modelling, 5, 243– 267. 350Google Scholar
Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C., and Raftery, A. E. 2011. Letter to the editor. Journal of the American Statistical Association, 105, 383. 201Google Scholar
Celeux, G., Martin-Magniette, M. L., Maugis-Rabusseau, C., and Raftery, A. E. 2014. Comparing model selection and regularization approaches to variable selection in model-based clustering. Journal de la Société Française de Statistique, 155, 5771. 77Google Scholar
Celeux, G., Frühwirth-Schnatter, S., and Robert, C. P. (eds.). 2018a. Handbook of Mixture Analysis. Chapman & Hall/CRC. 14Google Scholar
Celeux, G., Maugis, C., and Sedki, M. 2018b. Variable selection in model-based clustering and discriminant analysis with a regularization approach. Advances in Data Analysis and Classification, To appear. 202, 209Google Scholar
Cerioli, A., Garcia-Escudero, L. A., Mayo-Iscar, A., and Riani, M. 2018 . Finding the number of normal groups in model-based clustering via constrained likelihoods. Journal of Computational and Graphical Statistics, 27(2), 404416. 107Google Scholar
Chang, J. 2010. lda: Collapsed Gibbs sampling methods for topic models. R package version 1.2.1. 305Google Scholar
Chang, J., and Blei, D. M. 2009. Relational topic models for document networks. Pages 81–88 of: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, AISTATS 2009, Clearwater Beach, Florida, USA, April 16-18, 2009. 382Google Scholar
Chang, J., and Blei, D. M. 2010. Hierarchical relational models for document networks. Annals of Applied Statistics, 4(1), 124150. 329Google Scholar
Chang, W. C. 1983. On using principal component before separating a mixture of two multivariate normal distributions. Journal of the Royal Statistical Society. Series C (Applied Statistics), 32(3), 267275. 230Google Scholar
Channarond, A. 2015. Random graph models: an overview of modeling approaches. Journal de la Société Française de Statistique, 156(3), 5694. 294Google Scholar
Channarond, A., Daudin, J.-J., and Robin, S. 2012. Classification and estimation in the stochastic blockmodel based on the empirical degrees. Electronic Journal of Statistics, 6, 25742601. 300Google Scholar
Cheeseman, P., and Stutz, J. 1995. Bayesian classification (AutoClass): Theory and results. Pages 153–180 of: Fayyad, U., Piatesky-Shapiro, G., Smyth, P., and Uthurusamy, R. (eds.), Advances in Knowledge Discovery and Data Mining. AAAI Press. 77Google Scholar
Chen, J., and Tan, X. 2009. Inference for multivariate normal mixtures. Journal of Multivariate Analysis, 100, 13671383. 107CrossRefGoogle Scholar
Chen, T., Zhang, N. L., Liu, T. F., Wang, Y., and Poon, L. K. M. 2012. Model-based multidimensional clustering of categorical data. Artificial Intelligence, 176, 22462279. 198Google Scholar
Chi, E. C., and Lange, K. 2014. Stable estimation of a covariance matrix guided by nuclear norm penalties. Computational Statistics and Data Analysis, 80, 117128. 107Google Scholar
Chow, C. 1970. On optimum recognition error and reject tradeoff. IEEE Transactions on Information Theory, 16(1), 4146. 161Google Scholar
Ciuperca, G., Ridolfi, A., and Idier, J. 2003. Penalized maximum likelihood estimator for normal mixtures. Scandinavian Journal of Statistics, 30, 4559. 107Google Scholar
Collins, L. M., and Lanza, S. T. 2013. Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences. New York: Wiley. 197Google Scholar
Côme, E., and Oukhellou, L. 2014. Model-based count series clustering for bike sharing system usage mining: A case study with the Vélib system of Paris. ACM Transactions on Intelligent Systems and Technology, 5(3), 39:1–39:21. 194Google Scholar
Côme, E., Randriamanamihaga, A., Oukhellou, L., and Aknin, P. 2014. Spatio-temporal analysis of dynamic origin-destination data using latent Dirichlet allocation. Application to the Vélib bike sharing system of Paris. In: Proceedings of 93rd Annual Meeting of the Transportation Research Board. 365Google Scholar
Cook, R. D., and Weisberg, S. 1994. An Introduction to Regression Graphics. New York: John Wiley & Sons. 331Google Scholar
Coretto, P., and Hennig, C. 2010. A simulation study to compare robust clustering methods based on mixtures. Advances in Data Analysis and Classification, 4, 111135. 106Google Scholar
Coretto, P., and Hennig, C. 2011. Maximum likelihood estimation of heterogeneous mixtures of gaussian and uniform distributions. Journal of Statistical Planning and Inference, 141, 462473. 106Google Scholar
Corneli, M., Bouveyron, C., Latouche, P., and Rossi, F. 2018. The dynamic stochastic topic block model for dynamic networks with textual edges. Statistics and Computing, In press. 330Google Scholar
Cortes, C., and Vapnik, V. 1995. Support-vector networks. Machine Learning, 20(3), 273297. 5Google Scholar
Cox, D. R. 1958. The regression analysis of binary sequences. Journal of the Royal Statistical Society. Series B (Methodological), 215–242. 5Google Scholar
Czekanowski, J. 1909. Zur differential-diagnose der Neadertalgruppe. Korrespondenz-Blatt der Deutschen Geselleschaft für Anthropologie, Ethnologie, und Urgeschichte, 40, 4447. 2Google Scholar
Czekanowski, J. 1911. Objectiv kriterien in der ethnologie. Korrespondenz-Blatt der Deutschen Geselleschaft für Anthropologie, Ethnologie, und Urgeschichte, 47, 15. 2Google Scholar
Dang, U. J, Punzo, A., McNicholas, P. D., Ingrassia, S., and Browne, R. P. 2017. Multivariate response and parsimony for Gaussian cluster-weighted models. Journal of Classification, 34(1), 434. 350Google Scholar
Das Gupta, S. 1973. Theories and methods in classification: a review. Pages 77–137 of: Cacoullos, T. (ed.), Discriminant Analysis and Applications. Elsevier. 6Google Scholar
Dasarathy, B. 1980. Nosing around the neighbourhood: a new system structure and classification rule for recognition in partially exposed environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 6771. 161Google Scholar
Dasgupta, A., and Raftery, A. E. 1998. Detecting features in spatial point processes with clutter via model-based clustering. Journal of the American Statistical Association, 93, 294302. 53, 105Google Scholar
Dasgupta, D., and Nino, F. 2000. A comparison of negative and positive selection algorithms in novel pattern detection. Pages 125–130 of: IEEE International Conference on Systems, Man and Cybernetics. 161Google Scholar
Daudin, J.-J., Picard, F., and Robin, S. 2008. A mixture model for random graphs. Statistics and Computing, 18, 173183. 300Google Scholar
Day, N. E. 1969. Estimating the components of a mixture of two normal distributions. Biometrika, 56, 463474. 76, 92, 106Google Scholar
Dean, N., and Raftery, A. E. 2005. Normal-uniform mixture differential gene expression detection for cDNA microarrays. BMC Bioinformatics, 6, article 173. 106CrossRefGoogle ScholarPubMed
Dean, N., and Raftery, A. E. 2010. Latent class analysis variable selection. Annals of the Institute of Statistical Mathematics, 62, 1135. 212, 214Google Scholar
Deerwester, S., Dumais, S., Furnas, G., Landauer, T., and Harshman, R. 1990. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391. 364Google Scholar
Defays, D. 1978. An efficient algorithm for a complete link method. Computer Journal, 20, 364366. 33Google Scholar
Dellaportas, P. 1998. Bayesian classification of neolithic tools. Journal of the Royal Statistical Society. Series C (Applied Statistics), 47, 279297. 107Google Scholar
Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood for incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 138. 4, 23, 94, 337, 338Google Scholar
Devos, O., Ruckebusch, C., Durand, A., Duponchel, L., and Huvenne, J.-P. 2009. Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation. Chemometrics and Intelligent Laboratory Systems, 96, 2733. 11, 221Google Scholar
Diebolt, J., and Robert, C. P. 1994. Estimation of finite mixture distributions through Bayesian sampling. Journal of the Royal Statistical Society, Series B, 56(2), 363375. 337Google Scholar
Donoho, D. 2000. High-dimensional data analysis: The curses and blessings of dimensionality. In: Math Challenges of the 21st Century. American Mathematical Society. 222Google Scholar
Dowe, D. L. 2008. Foreword re C. S. Wallace. The Computer Journal, 51(5), 523560. 198Google Scholar
Driver, H. E., and Kroeber, A. L. 1932. Quantitative expression of cultural relationships. University of California Publications in Archaeology and Ethnology, 31, 211216. 2Google Scholar
Duda, R., Hart, P., and Stork, D. 2000. Pattern Classification. New York: John Wiley & Sons. 233Google Scholar
Edwards, A. W. F., and Cavalli-Sforza, L. L. 1965. A method for cluster analysis. Biometrics, 21, 362375. 76Google Scholar
Efron, B., and Tibshirani, R. 1997. Improvements on cross-validation: the .632+ bootstrap method. Journal of the American Statistical Association, 92, 648–560. 119Google Scholar
Emerson, J. W., and Green, W. A. 2014. gpairs: The Generalized Pairs Plot. R package version 1.2. 332Google Scholar
Erosheva, E. A. 2002. Grade of membership and latent structure models with application to disability survey data. Ph.D. thesis, Department of Statistics, Carnegie Mellon University. 304Google Scholar
Erosheva, E. A. 2003. Bayesian estimation of the Grade of Membership model. Pages 501–510 of: Bernardo, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., and West, M. (eds.), Bayesian Statistics, 7. UK: Oxford University Press. 304Google Scholar
Erosheva, E. A., Fienberg, S. E., and Joutard, C. 2007. Describing disability through individual-level mixture models for multivariate binary data. The Annals of Applied Statistics, 1(2), 502537. 304Google Scholar
Escabias, M., Aguilera, A. M., and Valderrama, M. J. 2005. Modeling environmental data by functional principal component logistic regression. Environmetrics, 16, 95107. 354Google Scholar
Evans, K., Love, T., and Thurston, S. W. 2015. Outlier identification in model-based cluster analysis. Journal of Classification, 32, 6384. 106Google Scholar
Everitt, B. S. 1993. Cluster Analysis. 3rd edn. London: Edward Arnold. 14Google Scholar
Everitt, B. S., and Hand, D. J. 1981. Finite Mixture Distributions. London: Chapman & Hall. Monographs on Applied Probability and Statistics. 14Google Scholar
Fienberg, S. E., and Wasserman, S. 1981. Discussion of “An exponential family of probability distributions for directed graphs” by Holland and Leinhardt. Journal of the American Statistical Association, 76(373), 54–57. 298Google Scholar
Figueiredo, M. A. T., and Jain, A. K. 2002. Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 381396. 107Google Scholar
Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179188. 5, 6, 154, 231, 237, 252, 356Google Scholar
Fisher, R. A. 1938. The statistical utilization of multiple measurements. Annals of Human Genetics, 8(4), 376–386. 5Google Scholar
Foley, D. H., and Sammon, J. W. 1975. An optimal set of discriminant vectors. IEEE Transactions on Computers, 24, 281289. 253Google Scholar
Fop, M., and Murphy, T. B. 2018. Variable selection methods for model-based clustering. Statistics Surveys, 12, 1865. 216Google Scholar
Fop, M., Smart, K., and Murphy, T. B. 2017. Variable selection for latent class analysis with application to low back pain diagnosis. Annals of Applied Statistics, 11(4), 20802110. 213, 214Google Scholar
Fop, M., Scrucca, L., and Murphy, T. B. 2018. Model-based clustering with sparse covariance matrices. Statistics and Computing, To appear. 77Google Scholar
Forbes, F., and Wraith, D. 2014. A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight: Application to robust clustering. Statistics and Computing, 24(6), 971984. 291Google Scholar
Forbes, F., Peyrard, N., Fraley, C., Georgian-Smith, D., Goldhaber, D. M., and Raftery, A. E. 2006. Model-based region-of-interest selection in dynamic breast MRI. Journal of Computer Assisted Tomography, 30, 675687. 383Google Scholar
Forina, M., Armanino, C., Castino, M., and Ubigli, M. 1986. Multivariate data analysis as a discriminating method of the origin of wines. Vitis, 25, 189201. 8, 60, 332Google Scholar
Fraiman, R., Justel, A., and Svarc, M. 2008. Selection of variables for cluster analysis and classification rules. Journal of the American Statistical Association, 103, 12941303. 215Google Scholar
Fraley, C., and Raftery, A. E. 1998. How many clusters? Which clustering method? - Answers via model-based cluster analysis. Computer Journal, 41, 578588. 53, 78, 105Google Scholar
Fraley, C., and Raftery, A. E. 1999. MCLUST: Software for model-based cluster analysis. Journal of Classification, 16, 297306. 76Google Scholar
Fraley, C., and Raftery, A. E. 2002. Model-based clustering, discriminant analysis and density estimation. Journal of the American Statistical Association, 97, 611631. 78, 105, 126, 248, 261Google Scholar
Fraley, C., and Raftery, A. E. 2003. Enhanced model-based clustering, density estimation and discriminant analysis software: MCLUST. Journal of Classification, 20, 263286. 94, 106Google Scholar
Fraley, C., and Raftery, A. E. 2005. Bayesian Regularization for Normal Mixture Estimation and Model-based Clustering. Technical Report 486. Department of Statistics, University of Washington. 95Google Scholar
Fraley, C., and Raftery, A. E. 2006. Some applications of model-based clustering in chemistry. R News, 6, 1723. 77, 382Google Scholar
Fraley, C., and Raftery, A. E. 2007a. Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification, 24, 155181. 94, 95, 107Google Scholar
Fraley, C., and Raftery, A. E. 2007b. Model-based methods of classification: Using the mclust software in chemometrics. Journal of Statistical Software, 18, paper i06. 76Google Scholar
Fraley, C., Raftery, A. E., and Wehrens, R. 2005. Incremental model-based clustering for large datasets with small clusters. Journal of Computational and Graphical Statistics, 14, 520546. 383Google Scholar
Franczak, B. C., Browne, R. P., and McNicholas, P. D. 2014. Mixtures of shifted asymmetric Laplace distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(6), 11491157. 291Google Scholar
Frénay, B., and Verleysen, M. 2014. Classification in the presence of label noise: a survey. IEEE Transactions on Neural Networks and Learning Systems, 25(5), 845869. 160Google Scholar
Friedman, H. P., and Rubin, J. 1967. On some invariant criteria for grouping data. Journal of the American Statistical Association, 62, 11591178. 76Google Scholar
Friedman, J. 1989. Regularized discriminant analysis. Journal of the American Statistical Association, 84, 165175. 115, 233, 236Google Scholar
Friel, N., Rastelli, R., Wyse, J., and Raftery, A. E. 2016. Interlocking directorates in Irish companies using a latent space model for bipartite networks. Proceedings of the National Academy of Sciences, 113(24), 6629–6634. 330Google Scholar
Fritz, H., García-Escudero, , L. A, and Mayo-Iscar, A. 2012. tclust: An R package for a trimming approach to cluster analysis. Journal of Statistical Software, 47(12), 126. 106Google Scholar
Fruchterman, T. M. J., and Reingold, E. M. 1991. Graph drawing by force-directed placement. Software - Practice and Experience, 21(11), 11291164. 292Google Scholar
Frühwirth-Schnatter, S. 2006. Finite Mixture and Markov Switching Models. Springer Series in Statistics. New York: Springer-Verlag. 14, 174, 337, 378Google Scholar
Frühwirth-Schnatter, S. 2011a. Dealing with label switching under model uncertainty. Pages 213–240 of: Mengersen, K. L., Robert, C., and Titterington, D. M. (eds.), Mixtures: Estimation and Applications. Wiley. 181, 184, 185, 379Google Scholar
Frühwirth-Schnatter, S. 2011b. Panel data analysis: a survey on model-based clustering of time series. Advances in Data Analysis and Classification, 5(4), 251280. 382Google Scholar
Frühwirth-Schnatter, S., and Kaufmann, S. 2008. Model-based clustering of multiple time series. Journal of Business and Economic Statistics, 26, 7889. 353Google Scholar
Fu, W., Song, L., and Xing, E. P. 2009. Dynamic mixed membership blockmodel for evolving networks. Pages 329–336 of: Proceedings of the 26th Annual International Conference on Machine Learning. ICML’09. New York, NY, USA: ACM. 330Google Scholar
Fukunaga, K. 1990. Introduction to Statistical Pattern Recognition. San Diego: Academic Press. 233, 252, 356Google Scholar
Fukunaga, K. 1999. Statistical pattern recognition. Pages 33–60 of: Chen, C. H., Pau, L. F., and Wang, P. S. P. (eds.), Handbook Of Pattern Recognition And Computer Vision. World Scientific. 6Google Scholar
Galimberti, G., Manisi, A., and Soffritti, G. 2017. Modelling the role of variable in model-based cluster analysis. Statistics and Computing, 28, 146169. 216Google Scholar
Gallegos, M. T., and Ritter, G. 2005. A robust method for cluster analysis. Annals of Statistics, 347–380. 88, 90Google Scholar
Gallegos, M. T., and Ritter, G. 2009a. Trimmed ML estimation of contaminated mixtures. Sankhyā A, 71, 164220. 106Google Scholar
Gallegos, M. T., and Ritter, G. 2009b. Trimming algorithms for clustering contaminated grouped data and their robustness. Advances in Data Analysis and Classification, 3, 135167. 106Google Scholar
Gamberger, D., Lavrac, N., and Groselj, C. 1999. Experiments with noise filtering in a medical domain. Pages 143–151 of: Proceedings of the Sixteenth International Conference on Machine Learning. ICML’99. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. 161Google Scholar
García-Escudero, L. A., Gordaliza, A., Matrán, C., and Mayo-Iscar, A. 2008. A general trimming approach to robust cluster analysis. Annals of Statistics, 36, 13241345. 88, 90, 91, 93, 106Google Scholar
García-Escudero, L. A., Gordaliza, A., Matrán, C., and Mayo-Iscar, A. 2010. A review of robust clustering methods. Advances in Data Analysis and Classification, 4, 89109. 106Google Scholar
García-Escudero, L. A., Gordaliza, A., Matrán, C., and Mayo-Iscar, A. 2011. Exploring the number of groups in robust model-based clustering. Statistics and Computing, 21, 585599. 106Google Scholar
García-Escudero, L. A., Gordaliza, A., Matrán, C., and Mayo-Iscar, A. 2015. Avoiding spurious local maximizers in mixture modeling. Statistics and Computing, 25, 619633. 107Google Scholar
Gates, G. 1972. The reduced nearest neighbor rule. IEEE Transactions on Information Theory, 18(3), 431433. 161Google Scholar
Gelfand, A. E., and Smith, A. F. M. 1990. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398409. 300Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. 2013. Bayesian Data Analysis. 3rd edn. London: Chapman and Hall. 94Google Scholar
Gershenfeld, N. 1997. Nonlinear inference and cluster-weighted modeling. Annals of the New York Academy of Sciences, 808(1), 1824. 350Google Scholar
Geweke, J., and Keane, M. 2007. Smoothly mixing regressions. Journal of Econometrics, 136(1), 252–290. 350Google Scholar
Ghahramani, Z., and Hinton, G. E. 1997. The EM algorithm for factor analyzers. Tech. rept. University of Toronto. 238, 240, 244, 246, 257Google Scholar
Giacofci, M., Lambert-Lacroix, S., Marot, G., and Picard, F. 2013. Wavelet-based clustering for mixed-effects functional models in high dimension. Biometrics, 69, 3140. 353Google Scholar
Goldenberg, A., Zheng, A. X., Fienberg, S. E., and Airoldi, E. M. 2010. A survey of statistical network models. Foundations and Trends in Machine Learning, 2, 129233. 294Google Scholar
Gollini, I. 2015. lvm4net: Latent Variable Models for Networks. R package version 0.2. 317Google Scholar
Gollini, I., and Murphy, T. B. 2014. Mixture of latent trait analyzers for model-based clustering of categorical data. Statistics and Computing, 24, 569588. 166, 167, 198Google Scholar
Gollini, I., and Murphy, T. B. 2016. Joint modelling of multiple network views. Journal of Computational and Graphical Statistics, 25(1), 246265. 314Google Scholar
Goodman, L. A. 1974. Exploratory latent structure models using both identifiable and unidentifiable models. Biometrika, 61, 215231. 166, 167Google Scholar
Gopal, S. 2007. The evolving social geography of blogs. Pages 275–293 of: Miller, H. J. (ed.), Societies and Cities in the Age of Instant Access. The GeoJournal Library, vol. 88. Springer Netherlands. 296Google Scholar
Gordon, A. D. 1999. Classification. 2nd edn. Boca Raton: Chapman & Hall/CRC. 14Google Scholar
Gormley, I. C., and Frühwirth-Schnatter, S. 2018. Mixtures of experts. Chap. 12, pages 279– 316 of: Frühwirth-Schnatter, S., Celeux, G., and Robert, C. P. (eds.), Handbook of Mixture Analysis. CRC Press. 350Google Scholar
Gormley, I. C., and Murphy, T. B. 2008. A mixture of experts model for rank data with applications in election studies. Annals of Applied Statistics, 2(4), 14521477. 350Google Scholar
Gormley, I. C., and Murphy, T. B. 2010a. Clustering ranked preference data using sociodemo-graphic covariates. Pages 543–569 of: Hess, S., and Daly, A. (eds.), Choice Modelling: The State-of-the-Art and the State-of-Practice. United Kingdom: Emerald. 315, 339, 350Google Scholar
Gormley, I. C., and Murphy, T. B. 2010b. A mixture of experts latent position cluster model for social network data. Statistical Methodology, 7(3), 385405. 350Google Scholar
Gormley, I. C., and Murphy, T. B. 2011. Mixture of experts models with social science applications. Pages 91–110 of: Mengersen, K., Robert, C., and Titterington, D. M. (eds.), Mixture Estimation and Applications. Wiley. 334, 339, 350Google Scholar
Gormley, I. C., and Murphy, T. B. 2018. MEclustnet: Fits the Mixture of Experts Latent Position Cluster Model to Network Data. R package version 1.2.1. 317Google Scholar
Govaert, G. 1977. Algorithme de classification d’un tableau de contingence. Pages 487–500 of: First International Symposium on Data Analysis and Informatics. Versailles: INRIA. 374Google Scholar
Govaert, G. 1983. Classification croisée. Thèse d’État, Université Paris 6, France. 172Google Scholar
Govaert, G., and Nadif, M. 2008. Block clustering with Bernoulli mixture models: Comparison of different approaches. Computational Statistics and Data Analysis, 52, 32333245. 374, 377Google Scholar
Govaert, G., and Nadif, M. 2010. Latent block model for contingency table. Communications in Statistics: Theory and Methods, 39(3), 416425. 383Google Scholar
Govaert, G., and Nadif, M. 2014. Co-clustering. London: ISTE and Wiley. 374Google Scholar
Grandvalet, Y., and Bengio, Y. 2004. Semi-supervised learning by entropy minimization. Pages 529–536 of: Proceedings of the 17th International Conference on Neural Information Processing Systems. NIPS’04. Cambridge, MA, USA: MIT Press. 134Google Scholar
Greenacre, M., and Blasius, J. (eds.). 2006. Multiple Correspondence Analysis and Related Methods. Chapman & Hall/CRC. 178Google Scholar
Greene, E. L. 1909. Landmarks of Botanical History: A Study of Certain Epochs in the Development of the Science of Botany. Part I. Prior to 1562 A.D. Washington, D.C.: Smithsonian Institution. 2Google Scholar
Grün, B., and Leisch, F. 2007. Fitting finite mixtures of generalized linear regressions in R. Computational Statistics & Data Analysis, 51(11), 52475252. 340Google Scholar
Grün, B., and Leisch, F. 2008. FlexMix Version 2: Finite mixtures with concomitant variables and varying and constant parameters. Journal of Statistical Software, 28(4), 135. 339, 340Google Scholar
Guo, J., Levina, E., Michailidis, G., and Zhu, J. 2010. Pairwise variable selection for high-dimensional model-based clustering. Biometrics, 66, 793804. 208Google Scholar
Guyon, I., Matic, N., and Vapnik, V. 1996. Discovering informative patterns and data cleaning. Advances in Knowledge Discovery and Data Mining, 181–203. 161Google Scholar
Gyllenberg, M., Koski, T., Reilink, E., and Verlaan, M. 1994. Nonuniqueness in probabilistic numerical identification of bacteria. Journal of Applied Probability, 31(2), 542548. 167Google Scholar
Habbema, J. D. F., Hermans, J., and van den Broek, K. 1974. A stepwise discriminant analysis program using density estimation. Pages 101–110 of: Bruckman, G. (ed.), Compstat 1974: Proceedings in Computational Statistics. Vienna: Physica-Verlag. 111Google Scholar
Hagenaars, J. A. 1988. Latent structure models with direct effects between indicators: Local dependence models. Sociological Methods and Research, 16, 379405. 198Google Scholar
Halbe, Z., Bortman, M., and Aladjem, M. 2013. Regularized mixture density estimation with an analytical setting of shrinkage intensities. IEEE Transactions on Neural Networks and Learning Systems, 24, 460470. 107Google Scholar
Hampel, F. R. 1971. A general qualitative definition of robustness. Annals of Mathematical Statistics, 42, 18871896. 105Google Scholar
Handcock, M. S., Raftery, A. E., and Tantrum, J. M. 2007. Model-based clustering for social networks. Journal of the Royal Statistical Society: Series A, 170(2), 122. 312, 314, 316, 350Google Scholar
Hanneke, S., Fu, W., and Xing, E. P. 2010. Discrete temporal models of social networks. Electronic Journal of Statistics, 4, 585605. 330Google Scholar
Hansen, L., Liisberg, C., and Salamon, P. 1997. The error-reject tradeoff. Open Systems and Information Dynamics, 4, 159184. 161Google Scholar
Harrison, P. J., and Stevens, C. F. 1971. Bayesian approach to short-term forecasting. Operational Research Quarterly, 22, 341362. 108Google Scholar
Hartigan, J. A. 1975. Clustering Algorithms. New York: John Wiley & Sons. 14Google Scholar
Hartigan, J. A., and Hartigan, P. M. 1985. The dip test of unimodality. Annals of Statistics, 13, 7084. 101Google Scholar
Hasnat, M. A., Velcin, J., Bonnevoy, S., and Jacques, J. 2017. Evolutionary clustering for categorical data using parametric links among multinomial mixture models. Econometrics and Statistics, 3, 141159. 198Google Scholar
Hastie, T., and Stuetzle, W. 1989. Principal curves. Journal of the American Statistical Association, 84, 502516. 229Google Scholar
Hastie, T., and Tibshirani, R. 1996. Discriminant analysis by Gaussian mixtures. Journal of the Royal Statistical Society. Series B (Methodological), 155–176. 6, 126, 146, 152Google Scholar
Hastie, T., Buja, A., and Tibshirani, R. 1995. Penalized discriminant analysis. The Annals of Statistics, 23, 73102. 233, 236Google Scholar
Hastie, T., Tibshirani, R., and Friedman, J. 2009. The Elements of Statistical Learning. 2nd edn. New York: Springer. 111, 131, 145Google Scholar
Hathaway, R. J. 1985. A constrained formulation of maximum likelihood estimation for normal mixture distributions. Annals of Statistics, 13, 795800. 93, 106Google Scholar
Hathaway, R. J. 1986a. Another interpretation of the EM algorithm for mixture distributions. Statistics and Probability Letters, 4(2), 5356. 326Google Scholar
Hathaway, R. J. 1986b. A constrained EM algorithm for univariate normal mixtures. Journal of Statistical Computation and Simulation, 23, 211230. 93, 106Google Scholar
Haughton, D. 1988. On the choice of a model to fit data from an exponential family. Annals of Statistics, 16, 342355. 51Google Scholar
Hawkins, D., and McLachlan, G. J. 1997. High-breakdown linear discriminant analysis. Journal of the American Statistical Association, 92(437), 136143. 161Google Scholar
Heard, N. A., Holmes, C. C., and Stephens, D. A. 2006. A quantitative study of gene regulation involved in the immune response of anopheline mosquitoes: an application of Bayesian hierarchical clustering of curves. Journal of the American Statistical Association, 101(473), 1829. 353Google Scholar
Hellman, M. 1970. The nearest neighbour classification with a reject option. IEEE Transactions on Systems Science and Cybernetics, 6(3), 179185. 161Google Scholar
Hennig, C. 2004. Breakdown points for maximum likelihood-estimators of location-scale mixtures. Annals of Statistics, 32, 13131340. 105, 106Google Scholar
Hennig, C. 2010. Methods for merging Gaussian mixture components. Advances in Data Analysis and Classification, 4, 334. 99, 101, 103Google Scholar
Hennig, C. 2013. Discussion of “Model-based clustering with non-normal mixture distributions” by Lee, S. X. and McLachlan, G. J.. Statistical Methods and Applications, 22, 455458. 108Google Scholar
Hennig, C. 2015a. fpc: Flexible Procedures for Clustering. R package version 2.1-10. 12, 101, 340Google Scholar
Hennig, C. 2015b. What are the true clusters? Pattern Recognition, 64, 5362. 108Google Scholar
Hennig, C., and Coretto, P. 2008. The noise component in model-based cluster analysis. Pages 127–138 of: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., and Decker, R. (eds.), Data Analysis, Machine Learning and Applications. Berlin: Springer. 106Google Scholar
Hennig, C., and Hausdorf, B. 2015. prabclus: Functions for Clustering of Presence-Absence, Abundance and Multilocus Genetic Data. R package version 2.2-6. 12, 83Google Scholar
Hennig, C., and Liao, T. F. 2013. How to find an appropriate clustering for mixed type variables with application to socio-economic stratification (with discussion). Journal of the Royal Statistical Society. Series C (Applied Statistics), 62, 309369. 169, 188Google Scholar
Hennig, C., Meilă, M., Murtagh, F., and Rocci, R. (eds.). 2015. Handbook of Cluster Analysis. Chapman & Hall/CRC. 14Google Scholar
Henry, N. W. 1999. Latent Structure Analysis at Fifty. Paper presented at the 1999 Joint Statistical Meetings, Baltimore MD, August, 1999. www.people.vcu.edu/ñhenry/LSA50.htm. 72Google Scholar
Hoff, P. D., Raftery, A. E., and Handcock, M. S. 2002. Latent space approaches to social network analysis. Journal of the American Statistical Association, 97(460), 1090–1098. 312, 313Google Scholar
Hofmann, T. 1999. Probabilistic latent semantic indexing. Pages 50–57 of: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM. 364Google Scholar
Holland, P. W., and Leinhardt, S. 1981. An exponential family of probability distributions for directed graphs. Journal of the American Statistical Association, 76(373), 3350. 329Google Scholar
Horaud, R., Forbes, F., Yguel, M., Dewaele, G., and Zhang, J. 2011. Rigid and articulated point registration with expectation conditional maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 587602. 105Google Scholar
Hosmer, D. W., Lemeshow, S., and Sturdivant, R. X. 2013. Applied Logistic Regression. 3rd edn. New York: Wiley. 109Google Scholar
Hotelling, H. 1931. The generalization of “Student’s” ratio. Annals of Mathematical Statistics. 5Google Scholar
Hotelling, H. 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417441. 228Google Scholar
Houdard, A., Bouveyron, C., and Delon, J. 2019. High-dimensional mixture models for unsupervised image denoising (HDMI). SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, In press. 372Google Scholar
Howard, E., Meehan, M., and Parnell, A. 2018. Contrasting prediction methods for early warning systems at undergraduate level. The Internet and Higher Education, 37, 6675. 78Google Scholar
Howells, W. W. 1973. Cranial variation in man: A study by multivariate analysis of patterns of difference among recent human populations. Papers of the Peabody Museum of Archaeology and Ethnology, 67, 1259. 65Google Scholar
Howells, W. W. 1989. Skull shapes and the map: Craniometric analyses in the dispersion of modern homo. Papers of the Peabody Museum of Archaeology and Ethnology, 79. 65Google Scholar
Howells, W. W. 1995. Who’s who in skulls: Ethnic identification of crania from measurements. Papers of the Peabody Museum of Archaeology and Ethnology, 82. 65Google Scholar
Howells, W. W. 1996. Howells’ craniometric data on the internet. American Journal of Physical Anthropology, 101, 441442. 65Google Scholar
Howland, P., and Park, H. 2004. Generalizing discriminant analysis using the generalized singular decomposition. IEEE Transactions on Pattern Analysis and Machine Learning. 233Google Scholar
Huber, P. 1985. Projection pursuit. Annals of Statistics, 13(2), 435525. 226Google Scholar
Hubert, L., and Arabie, P. 1985. Comparing partitions. Journal of Classification, 2, 193218. 41, 172Google Scholar
Hurn, M., Justel, A., and Robert, C. P. 2003. Estimating mixtures of regressions. Journal of Computational and Graphical Statistics, 12(1), 5579. 331, 350Google Scholar
Ingrassia, S., and Rocci, R. 2007. Constrained monotone EM algorithms for finite mixture of multivariate Gaussians. Computational and Statistical Data Analysis, 51, 53395351. 106Google Scholar
Ingrassia, S., Minotti, S. C., and Vittadini, G. 2012. Local statistical modeling via the cluster-weighted approach with elliptical distributions. Journal of Classification, 29(3), 363401. 350Google Scholar
Ingrassia, S., Punzo, A., Vittadini, G., and Minotti, S. C. 2015. The generalized linear mixed cluster-weighted model. Journal of Classification, 32(1), 85113. 350Google Scholar
Iscar, A. M., Garcia-Escudero, L. A., and Fritz, H. 2017. tclust: Robust Trimmed Clustering. R package version 1.3-1. 12Google Scholar
Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. 1991. Adaptive mixture of local experts. Neural Computation, 3(1), 7987. 333, 334Google Scholar
Jacques, J., and Biernacki, C. 2018. Model-based co-clustering for ordinal data. Computational Statistics and Data Analysis, 123, 101115. 383Google Scholar
Jacques, J., and Preda, C. 2013. Funclust: a curves clustering method using functional random variable density approximation. Neurocomputing, 112, 164171. 353Google Scholar
Jacques, J., and Preda, C. 2014a. Functional data clustering: A survey. Advances in Data Analysis and Classification, 8(3), 231255. 353Google Scholar
Jacques, J., and Preda, C. 2014b. Model-based clustering of multivariate functional data. Computational Statistics and Data Analysis, 71, 92106. 353, 359Google Scholar
James, G. M., and Sugar, C. A. 2003. Clustering for sparsely sampled functional data. Journal of the American Statistical Association, 98(462), 397408. 353, 354Google Scholar
Jeffreys, H. 1961. Theory of Probability. 3rd edn. Clarendon. 51Google Scholar
Jernite, Y., Latouche, P., Bouveyron, C., Rivera, P., Jegou, L., and Lamassé, S. 2014. The random subgraph model for the analysis of an ecclesiastical network in Merovingian Gaul. Annals of Applied Statistics, 8(1), 377405. 329Google Scholar
Jin, Z., Yang, J-Y., Hu, Z. S., and Lou, Z. 2001. Face recognition based on the uncorrelated optimal discriminant vectors. Pattern Recognition, 10(34), 20412047. 233Google Scholar
Joachims, T. 1999. Transductive inference for text classification using support vector machines. Pages 200–209 of: Proceedings of the Sixteenth International Conference on Machine Learning. ICML’99. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. 134Google Scholar
John, G. H. 1995. Robust decision trees: Removing outliers from databases. Pages 174–179 of: Proceedings of the First International Conference on Knowledge Discovery and Data Mining. KDD’95. AAAI Press. 161Google Scholar
Jordan, M. I., and Jacobs, R. A. 1994. Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6, 181214. 336Google Scholar
Jöreskog, K. G. 1978. Structural analysis of covariance and correlation matrices. Psychometrika, 43, 443477. 229Google Scholar
Jörnsten, R., and Keleş, S. 2008. Mixture models with multiple levels, with application to the analysis of multifactor gene expression data. Biostatistics, 9, 540554. 108Google Scholar
Karlis, D. 2003. An EM algorithm for multivariate Poisson distribution and related models. Journal of Applied Statistics, 30, 6377. 192Google Scholar
Karlis, D., and Santourian, A. 2009. Model-based clustering with non-elliptically contoured distributions. Statistics and Computing, 19(1), 7383. 283Google Scholar
Kass, R. E., and Raftery, A. E. 1995. Bayes factors. Journal of the American Statistical Association, 90, 773795. 47, 51Google Scholar
Kass, R. E., and Wasserman, L. 1995. A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the American Statistical Association, 90, 928934. 51Google Scholar
Keribin, C. 1998. Consistent estimate of the order of mixture models. Comptes Rendues de l’Academie des Sciences, série I — Mathématiques, 326, 243248. 53Google Scholar
Keribin, C., Brault, V., Celeux, G., and Govaert, G. 2015. Estimation and selection for the latent block model on categorical data. Statistics and Computing, 25, 12011216. 378, 379, 383Google Scholar
Kim, D., and Seo, B. 2014. Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers. Journal of Multivariate Analysis, 125, 100120. 107Google Scholar
Kim, S., Song, D. K. H., and DeSarbo, W. S. 2012. Model-based segmentation featuring simultaneous segment-level variable selection. Journal of Marketing Research, 49, 725736. 216Google Scholar
Kohonen, T. 1995. Self-Organizing Maps. New York: Springer-Verlag. 229Google Scholar
Kolaczyk, E. D. 2009. Statistical Analysis of Network Data: Methods and Models. New York: Springer. 294, 296Google Scholar
Krivitsky, P. N., and Handcock, M. S. 2008. Fitting latent cluster models for networks with latentnet. Journal of Statistical Software, 24(5), 1–23. 317Google Scholar
Krivitsky, P. N., and Handcock, M. S. 2010. latentnet: Latent position and cluster models for statistical networks. R package version 2.4-4. 317, 320Google Scholar
Krivitsky, P. N., Handcock, M. S., Raftery, A. E., and Hoff, P. D. 2009. Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Social Networks, 31(3), 204213. 315Google Scholar
Krzanowski, W. 2003. Principles of Multivariate Analysis. Oxford: Oxford University Press. 233Google Scholar
Lance, G. N., and Williams, W. T. 1967. A general theory of classificatory sorting strategies. II. Clustering systems. Computer Journal, 10, 271277. 34Google Scholar
Langrognet, F., Lebret, R., Poli, C., and Iovleff, S. 2016. Rmixmod: Supervised, Unsupervised, Semi-Supervised Classification with MIXture MODelling (Interface of MIXMOD Software). R package version 2.1-1. 12Google Scholar
Lasserre, J. A., Bishop, C. M., and Minka, T. P. 2006. Principled hybrids of generative and discriminative models. Pages 87–94 of: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1. IEEE Conference Publications. 111Google Scholar
Latouche, P., Birmelé, E., and Ambroise, C. 2010. Bayesian methods for graph clustering. Pages 229–239 of: Fink, A., Lausen, B., Seidel, W., and Ultsch, A. (eds.), Advances in Data Analysis, Data Handling and Business Intelligence. Studies in Classification, Data Analysis, and Knowledge Organization. Berlin, Heidelberg: Springer. 300Google Scholar
Latouche, P., Birmelé, E., and Ambroise, C. 2011. Overlapping stochastic block models with application to the French political blogosphere. Annals of Applied Statistics, 5(1), 309336. 329Google Scholar
Latouche, P., Birmelé, E., and Ambroise, C. 2012. Variational Bayesian inference and complexity control for stochastic block models. Statistical Modelling, 12(1), 93115. 302Google Scholar
Lavine, M., and West, M. 1992. A Bayesian method for classification and discrimination. Canadian Journal of Statistics, 20, 451461. 76, 107Google Scholar
Law, M. H., Figueiredo, M. A. T., and Jain, A. K. 2004. Simultaneous feature selection and clustering using mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 11541166. 200, 203, 204, 216Google Scholar
Lawrence, N., and Schölkopf, B. 2001. Estimating a kernel Fisher discriminant in the presence of label noise. Pages 306–313 of: Proceedings of the Eighteenth International Conference on Machine Learning. ICML’01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. 146, 147Google Scholar
Lazarsfeld, P. F. 1950a. The logical and mathematical foundations of latent structure analysis. Chap. 10 of: Stouffer, S. A. (ed.), Measurement and Prediction, Volume IV of The American Soldier: Studies in Social Psychology in World War II. Princeton University Press. 3, 72, 73Google Scholar
Lazarsfeld, P. F. 1950b. The logical and mathematical foundations of latent structure analysis. Pages 362–412 of: Stouffer, S. A. (ed.), Measurement and Prediction. Princeton University Press. 165Google Scholar
Lazarsfeld, P. F. 1950c. Some latent structures. Chap. 11 of: Stouffer, S. A. (ed.), Measurement and Prediction, Volume IV of The American Soldier: Studies in Social Psychology in World War II. Princeton University Press. 3, 72, 73Google Scholar
Lazarsfeld, P. F., and Henry, N. W. 1968. Latent Structure Analysis. Boston: Houghton Mifflin. 197, 298Google Scholar
Lazebnik, S., Schmid, C., and Ponce, J. 2006. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. Pages 2169–2178 of: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2. IEEE. 364Google Scholar
Lazega, E. 2001. The Collegial Phenomenon: The Social Mechanisms of Cooperation Among Peers in a Corporate Law Partnership. Oxford University Press. 298, 299Google Scholar
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 22782324. 5Google Scholar
Ledoit, O., and Wolf, M. 2003. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10, 603621. 107Google Scholar
Ledoit, O., and Wolf, M. 2004. A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis, 88, 365411. 107Google Scholar
Ledoit, O., and Wolf, M. 2012. Nonlinear shrinkage estimation of large-dimensional covariance matrices. Annals of Statistics, 40, 10241060. 107Google Scholar
Lee, H., and Li, J. 2012. Variable selection for clustering by separability based on ridgelines. Journal of Computational and Graphical Statistics, 21, 315337. 216Google Scholar
Lee, S. X., and McLachlan, G. J. 2013a. EMMIXuskew: An R package for fitting mixtures of multivariate skew t distributions via the EM algorithm. Journal of Statistical Software, 55(12), 122. 273, 275Google Scholar
Lee, S. X., and McLachlan, G. J. 2013b. EMMIXuskew: Fitting Unrestricted Multivariate Skew t Mixture Models. R package version 0.11-5. 275Google Scholar
Lee, S. X., and McLachlan, G. J. 2013c. Model-based clustering and classification with non-normal mixture distributions. Statistical Methods and Applications. Journal of the Italian Statistical Society, 22(4), 427454. 290Google Scholar
Lee, S. X., and McLachlan, G. J. 2013d. On mixtures of skew normal and skew t-distributions. Advances in Data Analysis and Classification, 7(3), 241266. 270, 290Google Scholar
Lee, S. X., and McLachlan, G. J. 2014. Finite mixtures of multivariate skew t-distributions: some recent and new results. Statistics and Computing, 24(2), 181202. 268, 272, 290Google Scholar
Lee, S. X., and McLachlan, G. J. 2016. Finite mixtures of canonical fundamental skew t-distributions: the unification of the restricted and unrestricted skew t-mixture models. Statistics and Computing, 26, 573589. 270, 291Google Scholar
Lee, S. X., and McLachlan, G. J. 2018. EMMIXcskew: an R package for the fitting of a mixture of canonical fundamental skew-t distributions. Journal of Statistical Software, 83(3), 132. 291Google Scholar
Leisch, F. 2004. FlexMix: A general framework for finite mixture models and latent class regression in R. Journal of Statistical Software, 11(8), 118. 12, 339, 340Google Scholar
Leroux, M. 1992. Consistent estimation of a mixing distribution. Annals of Statistics, 20, 13501360. 53Google Scholar
Li, J. 2005. Clustering based on a multilayer mixture model. Journal of Computational and Graphical Statistics, 14, 547568. 108Google Scholar
Li, J., Ray, S., and Lindsay, B. G. 2007a. A nonparametric statistical approach to clustering via mode identification. Journal of Machine Learning Research, 8, 16871723. 108Google Scholar
Li, J., Xia, Y., Shan, Z., and Liu, Y. 2015. Scalable constrained spectral clustering. IEEE Transactions on Knowledge and Data Engineering, 27(2), 589593. 160Google Scholar
Li, Q., Fraley, C., Bumgarner, R. E., Yeung, K. Y., and Raftery, A. E. 2005. Donuts, scratches and blanks: Robust model-based segmentation of microarray images. Bioinformatics, 21, 28752882. 383Google Scholar
Li, Y., Wessels, L., de Ridder, D., and Reinders, M. 2007b. Classification in the presence of class noise using a probabilistic kernel Fisher method. Pattern Recognition, 40(12), 33493357. 147Google Scholar
Lin, T.-C., and Lin, T.-I. 2010. Supervised learning of multivariate skew normal mixture models with missing information. Computational Statistics, 25(2), 183201. 290Google Scholar
Lin, T.-I. 2009. Maximum likelihood estimation for multivariate skew normal mixture models. Journal of Multivariate Analysis, 100(2), 257265. 268Google Scholar
Lin, T.-I. 2010. Robust mixture modeling using multivariate skew t distributions. Statistics and Computing, 20(3), 343356. 272Google Scholar
Lin, T.-I. 2014. Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition. Computational Statistics and Data Analysis, 71, 183195. 289Google Scholar
Lin, T.-I., and Lin, T.-C. 2011. Robust statistical modelling using the multivariate skew t distribution with complete and incomplete data. Statistical Modelling, 11(3), 253277. 290Google Scholar
Lin, T.-I., Ho, H. J., and Chen, C. L. 2009. Analysis of multivariate skew normal models with incomplete data. Journal of Multivariate Analysis, 100(10), 23372351. 268Google Scholar
Lin, T.-I., McNicholas, P. D., and Ho, H. J. 2014. Capturing patterns via parsimonious t mixture models. Statistics and Probability Letters, 88, 8087. 261Google Scholar
Lindsay, Bruce. 1995. Mixture Models: Theory, Geometry and Applications. Hayward, CA: Institute of Mathematical Statistics. 14Google Scholar
Linnaeus, C. 1735. Systema Naturae. 1st edn. Leiden, Netherlands: Theodorum Haak. 2Google Scholar
Linnaeus, C. 1753. Species Plantarum. 1st edn. Stockholm, Sweden: Laurentii Salvii. 2Google Scholar
Linnaeus, C. 1758. Systema Naturae. 10th edn. Stockholm, Sweden: Laurentii Salvii. 2Google Scholar
Linzer, D. A., and Lewis, J. B. 2011. poLCA: An R package for polytomous variable latent class analysis. Journal of Statistical Software, 42(10), 129. 340Google Scholar
Liu, C. 1997. ML estimation of the multivariate t distribution and the EM algorithm. Journal of Multivariate Analysis, 63, 296312. 260Google Scholar
Liu, J. S. 1994. The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem. Journal of the American Statistical Association, 89(427), 958966. 305Google Scholar
Lo, K., and Gottardo, R. 2012. Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: An alternative to the skew t distribution. Statistics and Computing, 22(1), 3352. 281Google Scholar
Lo, K., Brinkman, R. R., and Gottardo, R. 2008. Automated gating of flow cytometry data via robust model based clustering. Cytometry A, 73, 321332. 279Google Scholar
Lo, K., Hahne, F., Brinkman, R. R., and Gottardo, R. 2009. flowClust: a Bioconductor package for automated gating of flow cytometry data. BMC Bioinformatics, 10, R145. 281Google Scholar
Lomet, A. 2012. Sélection de modèle pour la classification croisée de données continues. Ph.D. thesis, Compiègne. 383Google Scholar
Longford, N. T., and Bartošová, J. 2014. A confusion index for measuring separation and clustering. Statistical Modelling, 14, 229255. 108Google Scholar
Lorrain, F., and White, H. C. 1971. Structural equivalence of individuals in social networks. Journal of Mathematical Sociology, 1(1), 4980. 298Google Scholar
MacQueen, J. 1967. Some methods for classification and analysis of multivariate observations. Pages 281–297 of: LeCam, L. M., and Neyman, J. (eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1. Berkeley, California: University of California Press. 75Google Scholar
Madeira, S. C., and Oliveira, A. L. 2004. Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1, 2445. 374Google Scholar
Mahalanobis, P. C. 1930. On tests and measures of group divergence. Part I. Theoretical formulae. Journal and Proceedings of the Asiatic Society of Bengal, 26, 541588. 5Google Scholar
Mangasarian, O. L., Street, W. N., and Wolberg, W. H. 1995. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43, 570577. 7Google Scholar
Manikopoulos, C., and Papavassiliou, S. 2002. Network intrusion and fault detection: a statistical anomaly approach. IEEE Communications Magazine, 40(10), 7682. 161Google Scholar
Marbac, M., Biernacki, C., and Vandewalle, V. 2015. Model-based clustering for conditionally correlated categorical data. Journal of Classification, 32, 145175. 198Google Scholar
Mariadassou, M., Robin, S., and Vacher, C. 2010. Uncovering latent structure in valued graphs: A variational approach. Annals of Applied Statistics, 4(2), 715742. 329Google Scholar
Markou, M., and Singh, S. 2003a. Novelty detection: A review - part 1: Statistical approaches. Signal Processing, 83(12), 24812497. 161Google Scholar
Markou, M., and Singh, S. 2003b. Novelty detection: A review - part 2: Neural network based approaches. Signal Processing, 83(12), 24992521. 161Google Scholar
Marriott, F. H. C. 1975. Separating mixtures of normal distributions. Biometrics, 31, 767769. 34Google Scholar
Masoudnia, S., and Ebrahimpour, R. 2014. Mixture of experts: A literature survey. Artificial Intelligence Review, 42(2), 275293. 350Google Scholar
Matias, C., and Miele, V. 2017. Statistical clustering of temporal networks through a dynamic stochastic block model. Journal of the Royal Statistical Society, Series B, 79, 11191141. 329Google Scholar
Maugis, C., Celeux, G., and Martin-Magniette, M.-L. 2009a. Variable selection for clustering with Gaussian mixture models. Biometrics, 65, 701709. 200, 203, 212, 216Google Scholar
Maugis, C., Celeux, G., and Martin-Magniette, M.-L. 2009b. Variable selection in model-based clustering: A general variable role modeling. Computational Statistics and Data Analysis, 53, 38723882. 201, 210Google Scholar
Maugis, C., Celeux, G., and Martin-Magniette, M.-L. 2011. Variable selection in model-based discriminant analysis. Journal of Multivariate Analysis, 102, 13741387. 210Google Scholar
Mazza, A., Punzo, A., and Ingrassia, S. 2018. flexCWM: A flexible framework for cluster-weighted models. Journal of Statistical Software, 86(2), 130. 350Google Scholar
McCullagh, P., and Nelder, J. A. 1983. Generalized Linear Models. London: Chapman and Hall. 334Google Scholar
McCutcheon, A. C. 1987. Latent Class Analysis. Beverly Hills: Sage Publications. 197Google Scholar
McDaid, A. F., and Hurley, N. J. 2010. Detecting highly overlapping communities with model-based overlapping seed expansion. Pages 112–119 of: Memon, N., and Alhajj, R. (eds.), International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE Computer Society. 329Google Scholar
McDaid, A. F., Murphy, T. B., Friel, N., and Hurley, N. J. 2012. Model-based clustering in networks with Stochastic Community Finding. Pages 549–560 of: Colubi, A., Fokianos, K., Kontoghiorghes, E. J., and Gonzáles-Rodríguez, G. (eds.), Proceedings of COMPSTAT 2012: 20th International Conference on Computational Statistics. ISI-IASC. 300Google Scholar
McDaid, A. F., Murphy, T. B., Friel, N., and Hurley, N. J. 2013 . Improved Bayesian inference for the stochastic block model with application to large networks. Computational Statistics and Data Analysis, 60, 1231. 300Google Scholar
McDaid, A. F., Hurley, N. J., and Murphy, T. B. 2014. Overlapping stochastic community finding. Pages 17–20 of: Wu, X., Ester, M., and Xu, G. (eds.), Advances in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference on. IEEE. 329Google Scholar
McLachlan, G. J. 1976. A criterion for selecting variables for the linear discriminant function. Biometrics, 529–534. 6Google Scholar
McLachlan, G. J. 1992. Discriminant Analysis and Statistical Pattern Recognition. John Wiley & Sons. 6, 115, 146Google Scholar
McLachlan, G. J., and Basford, K. E. 1988. Mixture Models: Inference and Applications to Clustering. New York: Marcel Dekker. 14, 76Google Scholar
McLachlan, G. J., and Ganesalingam, S. 1982. Updating a discriminant function on the basis of unclassified data. Communications in Statistics-Simulation and Computation, 11(6), 753767. 6Google Scholar
McLachlan, G. J., and Krishnan, T. 1997. The EM Algorithm and Extensions. Wiley. 23, 377Google Scholar
McLachlan, G. J., and Lee, S. X. 2016. Comment on “On nomenclature, and the relative merits of two formulations of skew distributions” by Azzalini, A., Browne, R., Genton, M., and McNicholas, P.. Statistics and Probability Letters, 116, 15. 267, 270Google Scholar
McLachlan, G. J., and Peel, D. 1998. Robust cluster analysis via mixtures of multivariate t-distributions. Pages 658–666 of: Advances in pattern recognition (Sydney, 1998). Lecture Notes in Comput. Sci., vol. 1451. Springer, Berlin. 260Google Scholar
McLachlan, G. J., and Peel, D. 2000. Finite Mixture Models. New York: Wiley. 14, 78, 107, 174, 183, 350Google Scholar
McLachlan, G. J., Peel, D., Basford, K. E., and Adams, P. 1999. The EMMIX software for the fitting of mixtures of normal and t-components. Journal of Statistical Software, 4(2). 261Google Scholar
McLachlan, G. J., Peel, D., and Bean, R. 2003. Modelling high-dimensional data by mixtures of factor analyzers. Computational Statistics and Data Analysis, 41(3–4), 379–388. 238, 240, 244, 246, 257Google Scholar
McLachlan, G. J., Bean, R. W., and Ben-Tovim Jones, L. 2007. Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution. Computational Statistics and Data Analysis, 51(11), 53275338. 257, 261Google Scholar
McNicholas, P. D. 2016a. Mixture Model-Based Clustering. Boca Raton, Fl.: Chapman & Hall/CRC Press. 14, 78Google Scholar
McNicholas, P. D. 2016b. Model-based clustering. Journal of Classification, 33, 331373. 78Google Scholar
McNicholas, P. D., and Murphy, T. B. 2008. Parsimonious Gaussian mixture models. Statistics and Computing, 18(3), 285296. 244, 246Google Scholar
McNicholas, P. D., and Murphy, T. B. 2010a. Model-based clustering of longitudinal data. Canadian Journal of Statistics, 38(1), 153168. 77Google Scholar
McNicholas, P. D., and Murphy, T. B. 2010b. Model-based clustering of microarray expression data via latent Gaussian mixture models. Bioinformatics, 26(21), 2705–2712. 244, 246, 257Google Scholar
McNicholas, P. D., ElSherbiny, A., McDaid, A. F., and Murphy, T. B. 2018. pgmm: Parsimonious Gaussian Mixture Models. R package version 1.2.2. 12Google Scholar
McParland, D., and Gormley, I. C. 2016. Model-based clustering for mixed data: clustMD. Advances in Data Analysis and Classification, 10, 155169. 186, 187Google Scholar
McParland, D., and Gormley, I. C. 2017. clustMD: Model Based Clustering for Mixed Data. R package version 1.2.1. 12Google Scholar
McParland, D., and Murphy, T. B. 2018. Mixture modelling of high-dimensional data. Pages 247–280 of: Celeux, G., Frühwirth-Schnatter, S., and Robert, C. P. (eds.), Handbook of Mixture Analysis. Chapman & Hall/CRC. 257Google Scholar
Meeds, E., and Roweis, S. 2007. Nonparametric Bayesian Biclustering. Tech. rept. UTML TR 2007-001. Department of Computer Science, University of Toronto. 374Google Scholar
Melnykov, V. 2016. ClickClust: An R package for model-based clustering of categorical sequences. Journal of Statistical Software, 74(9). 198Google Scholar
Melnykov, V., Melnykov, I., and Michael, S. 2015. Semi-supervised model-based clustering with positive and negative constraints. Advances in Data Analysis and Classification, 1–23. 144Google Scholar
Meng, X.-L., and Van Dyk, D. 1997. The EM algorithm - an old folk song sung to a fast new tune. Journal of the Royal Statistical Society. Series B (Methodological), 59(3), 511567. 246Google Scholar
Mengersen, K. L., Robert, C. P., and Titterington, D. M. (eds.). 2011. Mixtures: Estimation and Applications. Wiley. 14Google Scholar
Michael, S., and Melnykov, V. 2016. An effective strategy for initializing the EM algorithm in finite mixture models. Advances in Data Analysis and Classification, 10, 563583. 77Google Scholar
Miller, D., and Browning, J. 2003. A mixture model and em-based algorithm for class discovery, robust classification, and outlier rejection in mixed labeled/unlabeled data sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(25), 14681483. 111, 155, 156, 157, 159Google Scholar
Mingers, J. 1989. An empirical comparison of pruning methods for decision tree induction. Journal of Machine Learning, 4(2), 227243. 161Google Scholar
Minka, T. P., Winn, J., Guiver, J., and Knowles, D. 2010. Infer.NET. Version 2.4. 306Google Scholar
Mkhadri, A., Celeux, G., and Nasrollah, A. 1997. Regularization in discriminant analysis: a survey. Computational Statistics and Data Analysis, 23, 403423. 117, 236Google Scholar
Montanari, A., and Viroli, C. 2010. Heteroscedastic factor mixture analysis. Statistical Modeling, 10(4), 441460. 243Google Scholar
Mosmann, T. R., Naim, I., Rebhahn, J., Datta, S., Cavenaugh, J. S., Weaver, J. M., and Sharma, G. 2014. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, Part 2: Biological evaluation. Cytometry, Part A, 85, 422433. 108Google Scholar
Muise, R., and Smith, C. 1992. Nonparametric Minefield Detection and Localization. Technical Report CSS-TM-591-91. Coastal Systems Station, Panama City, Florida. 10Google Scholar
Mukherjee, S., Feigelson, E. D., Babu, G. J., Murtagh, F., Fraley, C., and Raftery, A. E. 1998. Three types of gamma ray bursts. Astrophysical Journal, 508, 314327. 77Google Scholar
Murphy, K., and Murphy, T. B. 2018a. MoEClust: Gaussian Parsimonious Clustering Models with Covariates. R package version 1.2.0. 340Google Scholar
Murphy, K., and Murphy, T. B. 2018b. Parsimonious model-based clustering with covariates. arXiv preprint arXiv:1711.05632v2. 340Google Scholar
Murphy, T. B., Raftery, A. E., and Dean, N. 2010. Variable selection and updating in model-based discriminant analysis for high-dimensional data with food authenticity applications. Annals of Applied Statistics, 4, 396421. 210Google Scholar
Murray, P. M., Browne, R. P., and McNicholas, P. D. 2017. A mixture of SDB skew-t factor analyzers. Econometrics and Statistics, 3, 160168. 290Google Scholar
Murtagh, F., and Raftery, A. E. 1984. Fitting straight lines to point patterns. Pattern Recognition, 17, 479483. 76Google Scholar
Murtagh, F., Raftery, A. E., and Starck, J. L. 2005. Bayesian inference for multiband image segmentation via model-based cluster trees. Image and Vision Computing, 23, 587596. 383Google Scholar
Nadif, M., and Govaert, G. 1998. Clustering for binary data and mixture models: Choice of the model. Applied Stochastic Models and Data Analysis, 13, 269278. 174Google Scholar
Nadolski, J., and Viele, K. 2004 (July). The role of latent variables in model selection accuracy. In: International Federation of Classification Societies Meeting. 174Google Scholar
Naim, I., Datta, S., Rebhahn, J., Cavenaugh, J. S., Mosmann, T. R., and Sharma, G. 2014. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, Part 1: Algorithm design. Cytometry, Part A, 85, 408421. 108Google Scholar
Newman, M. E. J. 2016. Equivalence between modularity optimization and maximum likelihood methods for community detection. Physical Review E, 94, 052315. 329Google Scholar
Nia, V. P., and Davison, A. C. 2012. High-dimensional Bayesian clustering with variable selection: The R package bclust. Journal of Statistical Software, 47(5), 122. 215Google Scholar
Nigam, K., McCallum, A., Thrun, S., and Mitchell, T. 2000. Text classification from labeled and unlabeled documents using em. Machine Learning, 39(2-3), 103134. 364Google Scholar
Nobile, A., and Fearnside, A. T. 2007. Bayesian finite mixtures with an unknown number of components: The allocation sampler. Statistics and Computing, 17, 147162. 213Google Scholar
Nowicki, K., and Snijders, T. A. B. 2001. Estimation and prediction of stochastic blockstructures. Journal of the American Statistical Association, 96(455), 10771087. 298, 300Google Scholar
Odin, T., and Addison, D. 2000. Novelty detection using neural network technology. Pages 731–743 of: COMADEM 2000: 13th International Congress on Condition Monitoring and Diagnostic Engineering Management. 161Google Scholar
Oh, M. S., and Raftery, A. E. 2001. Bayesian multidimensional scaling and choice of dimension. Journal of the American Statistical Association, 96, 10311044. 77Google Scholar
Oh, M. S., and Raftery, A. E. 2007. Model-based clustering with dissimilarities: A Bayesian approach. Journal of Computational and Graphical Statistics, 16, 559585. 77Google Scholar
O’Hagan, A., and Ferrari, C. 2017. Model-based and nonparametric approaches to clustering for data compression in actuarial applications. North American Actuarial Journal, 21(1), 107146. 78Google Scholar
O’Hagan, A., and White, A. 2018. Improved model-based clustering performance using Bayesian initialization averaging. Computational Statistics, To appear. 77Google Scholar
O’Hagan, A., Murphy, T. B., and Gormley, I. C. 2012. Computational aspects of fitting mixture models via the expectation-maximization algorithm. Computational Statistics and Data Analysis, 56(12), 38433864. 77Google Scholar
O’Hagan, A., Murphy, T. B., Gormley, I. C., McNicholas, P. D., and Karlis, D. 2016. Clustering with the multivariate normal inverse Gaussian distribution. Computational Statistics and Data Analysis, 93, 1830. 283Google Scholar
Pan, W., and Shen, X. 2007. Penalized model-based clustering with application to variable selection. Journal of Machine Learning Research, 8, 11451164. 208Google Scholar
Papadimitriou, C., Tamaki, H., Raghavan, P., and Vempala, S. 1998. Latent semantic indexing: A probabilistic analysis. Pages 159–168 of: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. PODS’98. New York, NY, USA: ACM. 364Google Scholar
Papastamoulis, P., and Iliopoulos, G. 2010. An artificial allocations based solution to the label switching problem in Bayesian analysis of mixtures of distributions. Journal of Computational and Graphical Statistics, 19, 313331. 183Google Scholar
Pavlenko, T. 2003. On feature selection, curse of dimensionality and error probability in discriminant analysis. Journal of Statistical Planning and Inference, 115, 565584. 224, 225Google Scholar
Pavlenko, T., and Von Rosen, D. 2001. Effect of dimensionality on discrimination. Statistics, 35(3), 191213. 224, 225Google Scholar
Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 6(2), 559572. 228Google Scholar
Peel, D., and McLachlan, G. J. 2000. Robust mixture modelling using the t distribution. Statistics and Computing, 10, 339348. 106, 260, 261Google Scholar
Peng, F., Jacobs, R. A., and Tanner, M. A. 1996. Bayesian inference in Mixtures-of-Experts and Hierarchical Mixtures-of-Experts models with an application to speech recognition. Journal of the American Statistical Association, 91(435), 953–960. 349Google Scholar
Pontikos, D. 2004. Model-Based Clustering of World Craniometric Variation. dienekes.50webs.com/arp/articles/anthropologica/clustering.html. September 2004, accessed January 27, 2016. 65Google Scholar
Pontikos, D. 2010. World Craniometric Analysis with MCLUST Revisited. dienekes.blogspot.com/2010/12/world-craniometric-analysis-with-mclust.html. December 5, 2010; accessed January 27, 2016. 65Google Scholar
Poon, L. K. M., Zhang, N. L., and Liu, A. H. 2013. Model-based clustering of high-dimensional data: Variable selection versus facet determination. International Journal of Approximate Reasoning, 54, 196215. 216Google Scholar
Prates, M. O., Cabral, C. R. B., and Lachos, V. H. 2013. mixsmsn: Fitting finite mixture of scale mixture of skew-normal distributions. Journal of Statistical Software, 54(12), 120. 269Google Scholar
Punzo, A., and McNicholas, P. D. 2017. Robust clustering in regression analysis via the contaminated Gaussian cluster-weighted model. Journal of Classification, 34, 249293. 350Google Scholar
Pyne, S., Hua, X., Wang, K., Rossina, E., Lin, T.-I., Maiera, L. M., Baecher-Alland, C., McLachlan, G. J., Tamayoa, P., Haflera, D. A., De Jagera, P. L., and Mesirova, J. P. 2009. Automated high-dimensional flow cytometric data analysis. Proceedings of the National Academy of Sciences USA, 106, 85198524. 271Google Scholar
Quandt, R. E., and Ramsey, J. B. 1978. Estimating mixtures of normal distributions and switching regressions. Journal of the American Statistical Association, 73(364), 730738. 340Google Scholar
Quinlan, J. R. 1996. Bagging, boosting, and C4.S. Pages 725–730 of: Proceedings of the Thirteenth National Conference on Artificial Intelligence - Volume 1. AAAI’96. AAAI Press. 161Google Scholar
R Development Core Team. 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. 339Google Scholar
Raftery, A. E. 1995 . Bayesian model selection in social research (with discussion). Sociological Methodology, 25, 111193. 51, 173Google Scholar
Raftery, A. E. 1999. Bayes factors and BIC: Comment on ‘A critique of the Bayesian Information Criterion for model selection’. Sociological Methods and Research, 27, 411427. 52Google Scholar
Raftery, A. E., and Dean, N. 2006. Variable selection for model-based clustering. Journal of the American Statistical Association, 101, 168178. 200, 203, 205, 210Google Scholar
Raftery, A. E., Niu, X., Hoff, P. D., and Yeung, K. Y. 2012. Fast inference for the latent space network model using a case-control approximate likelihood. Journal of Computational and Graphical Statistics, 21, 901919. 317Google Scholar
Ramsay, J. O., and Silverman, B. W. 2005. Functional Data Analysis. Second edn. Springer Series in Statistics. New York: Springer. 354, 359Google Scholar
Rand, W. M. 1971. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846850. 40Google Scholar
Rao, C. R. 1948. The utilization of multiple measurements in problems of biological classification. Journal of the Royal Statistical Society. Series B (Methodological), 10(2), 159203. 6Google Scholar
Rao, C. R. 1952. Advanced Statistical Methods in Biometric Research. Oxford, England: Wiley. 6Google Scholar
Rao, C. R. 1954. A general theory of discrimination when the information about alternative population distributions is based on samples. Annals of Mathematical Statistics, 25(4), 651– 670. 6Google Scholar
Rau, A., Maugis, C., Martin-Magniette, M.-L., and Celeux, G. 2015. Co-expression analysis of high-throughput transcriptome sequencing data with poisson mixture models. Bioinformatics, 31, 14201427. 192, 194Google Scholar
Ray, S., and Lindsay, B. G. 2005. The topography of multivariate normal mixtures. Annals of Statistics, 33, 20422065. 101Google Scholar
Ray, S., and Mallick, B. 2006. Functional clustering by Bayesian wavelet methods. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 68(2), 305332. 353Google Scholar
Reaven, G. M., and Miller, R. G. 1979. An attempt to define the nature of chemical diabetes using a multidimensional analysis. Diabetologia, 16, 1724. 7Google Scholar
Redner, R. A., and Walker, H. F. 1984. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26, 195239. 32, 93, 106Google Scholar
Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge University Press. 110, 140Google Scholar
Rivera-García, D., García-Escudero, L. A., Mayo-Iscar, A., and Ortega, J. 2018. Robust clustering for functional data based on trimming and constraints. Advances in Data Analysis and Classification, In press. 382Google Scholar
Roberts, S., and Tarassenko, L. 1994. A probabilistic resource allocating network for novelty detection. Neural Computation, 6, 270284. 161Google Scholar
Roberts, S., Husmeier, D., Rezek, I., and Penny, W. 1998. Bayesian approaches to Gaussian mixture modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 11331142. 107Google Scholar
Roberts, S. J. 1999. Novelty detection using extreme value statistics. IEE Proceedings - Vision, Image and Signal Processing, 146(3), 124–129. 161Google Scholar
Roeder, K., and Wasserman, L. 1997. Practical Bayesian density estimation using mixtures of normals. Journal of the American Statistical Association, 92, 894902. 53Google Scholar
Rosen, O., and Tanner, M. A. 1999. Mixtures of proportional hazards regression models. Statistics in Medicine, 18, 11191131. 350Google Scholar
Rosenblatt, F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386. 5Google Scholar
Rousseeuw, P. J., and Leroy, A. 1987. Robust Regression and Outlier Detection. New York: Wiley. 161Google Scholar
Ruan, L., Yuan, M., and Zou, H. 2011. Regularized parameter estimation in high-dimensional Gaussian mixture models. Neural Computation, 23, 16051622. 107Google Scholar
Rubin, D. B., and Thayer, D. 1982. EM algorithms for ML factor analysis. Psychometrika, 47(1), 6976. 238Google Scholar
Runnals, A. 2007. A Kullback–Leibler approach to Gaussian mixture reduction. IEEE Transactions on Aerospace and Electronic Systems, 43, 989999. 108Google Scholar
Russell, N., Cribbin, L., and Murphy, T. B. 2014. upclass: Updated Classification Methods using Unlabeled Data. R package version 2.0. 136Google Scholar
Russell, N., Murphy, T. B., and Raftery, A. E. 2015. Bayesian model averaging in model-based clustering and density estimation. Technical Report 635. Department of Statistics, University of Washington. Also available at arXiv:1506.09035. 77Google Scholar
Sahu, S. K., Dey, D. K., and Branco, M. D. 2003. A new class of multivariate skew distributions with applications to Bayesian regression models. The Canadian Journal of Statistics, 31(2), 129150. 267, 269, 271Google Scholar
Sakakibara, Y. 1993. Noise-tolerant Occam algorithms and their applications to learning decision trees. Journal of Machine Learning, 11(1), 3762. 161Google Scholar
Salmond, D. J. 2009. Mixture reduction algorithms for point and extended object tracking in clutter. IEEE Transactions on Aerospace and Electronic Systems, 45, 667686. 108Google Scholar
Salter-Townshend, M. 2012. VBLPCM: Variational Bayes Latent Position Cluster Model for Networks. R package version 2.0. 317, 320Google Scholar
Salter-Townshend, M., and Murphy, T. B. 2009. Variational Bayesian inference for the latent position cluster model. In: NIPS Workshop on Analyzing Networks and Learning with Graphs. 317Google Scholar
Salter-Townshend, M., and Murphy, T. B. 2013. Variational Bayesian inference for the latent position cluster model for network data. Computational Statistics and Data Analysis, 57(1), 661671. 317Google Scholar
Salter-Townshend, M., and Murphy, T. B. 2015. Role analysis in networks using mixtures of exponential random graph models. Journal of Computational and Graphical Statistics, 24, 520538. 329Google Scholar
Salter-Townshend, M., White, A., Gollini, I., and Murphy, T. B. 2012. Review of statistical network analysis: Models, algorithms, and software. Statistical Analysis and Data Mining, 5(4), 243264. 294Google Scholar
Samé, A., Chamroukhi, F., Govaert, G., and Aknin, P. 2011. Model-based clustering and segmentation of times series with changes in regime. Advances in Data Analysis and Classification, 5(4), 301322. 353Google Scholar
Sampson, S. F. 1969. Crisis in a Cloister. Ph.D. thesis, Cornell University. 293, 294, 295, 302Google Scholar
Sanguinetti, G. 2008. Dimensionality reduction of clustered datasets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(3), 129. 252Google Scholar
Sarkar, P., and Moore, A. W. 2005a. Dynamic social network analysis using latent space models. Pages 1145–1152 of: Proceedings of the 18th International Conference on Neural Information Processing Systems. NIPS’05. Cambridge, MA, USA: MIT Press. 330Google Scholar
Sarkar, P., and Moore, A. W. 2005b. Dynamic social network analysis using latent space models. SIGKDD Explorations, 7(2), 3140. 330Google Scholar
Sarkar, P., Siddiqi, S. M., and Gordon, G. J. 2007. A latent space approach to dynamic embedding of co-occurrence data. Pages 420–427 of: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, AISTATS 2007, San Juan, Puerto Rico, March 21-24, 2007. 330Google Scholar
Schapire, R. 1990. The strength of weak learnability. Machine Learning, 5, 197227. 161Google Scholar
Schmutz, A., Bouveyron, C., Jacques, J., Martin, P., and Cheze, L. 2018. Clustering multivariate functional data in group-specific functional subspaces. Tech. rept. Preprint HAL 01652467. Université Côte d’Âzur. 353, 359Google Scholar
Schölkopf, B., Smola, A., and Müller, K. 1998. Non linear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 12991319. 229Google Scholar
Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., and Platt, J. 1999. Support vector method for novelty detection. Pages 582–588 of: Proceedings of the 12th International Conference on Neural Information Processing Systems. NIPS’99. Cambridge, MA, USA: MIT Press. 161Google Scholar
Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics, 6, 461464. 51, 133, 172Google Scholar
Scott, A. J., and Symons, M. J. 1971. Clustering methods based on likelihood ratio criteria. Biometrics, 27, 387397. 76Google Scholar
Scott, D. 1992. Multivariate Density Estimation. New York: Wiley & Sons. 222Google Scholar
Scott, D., and Thompson, J. R. 1983. Probability density estimation in higher dimensions. Pages 173–179 of: Gentle, J. E. (ed.), Computer Science and Statistics: Proceedings of the Fifteenth Symposium on the Interface. 225Google Scholar
Scrucca, L. 2010 . Dimension reduction for model-based clustering. Statistics and Computing, 20(4), 471484. 257Google Scholar
Scrucca, L. 2016a. Genetic algorithms for subset selection in model-based clustering. Pages 55–70 of: Celebi, M. E., and Aydin, K. (eds.), Unsupervised Learning Algorithms. Springer International Publishing. 216Google Scholar
Scrucca, L. 2016b. Identifying connected components in Gaussian finite mixture models for clustering. Pattern Recognition, 93, 517. 108Google Scholar
Scrucca, L., and Raftery, A. E. 2015. Improved initialisation of model-based clustering using a Gaussian hierarchical partition. Advances in Data Analysis and Classification, 9, 447460. 77Google Scholar
Scrucca, L., and Raftery, A. E. 2018. clustvarsel: a package implementing variable selection for Gaussian model-based clustering in R. Journal of Statistical Software, 84, 128. 203Google Scholar
Scrucca, L., Fop, M., Murphy, T. B., and Raftery, A. E. 2016. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8, 205233. 12Google Scholar
Seo, B., and Kim, D. 2012. Root selection in normal mixture models. Computational Statistics and Data Analysis, 56, 24542470. 107Google Scholar
Sewell, D. K., and Chen, Y. 2015. Latent space models for dynamic networks. Journal of the American Statistical Association, 110, 16461657. 330Google Scholar
Shental, N., Bar-Hillel, A., Hertz, T., and Weinshall, D. 2003. Computing Gaussian mixture models with EM using equivalence constraints. Pages 465–472 of: Proceedings of the 16th International Conference on Neural Information Processing Systems. NIPS’03. Cambridge, MA, USA: MIT Press. 141, 144Google Scholar
Silvestre, C., Cardoso, M. G. M. S., and Figueiredo, M. A. T. 2015. Features selection for clustering categorical data with an embedded modelling approach. Expert Systems, 32, 444453. 216Google Scholar
Smídl, V., and Quinn, A. 2006. The Variational Bayes Method in Signal Processing. Springer. 337Google Scholar
Sneath, P. H. A. 1957. The application of computers to taxonomy. Journal of General Microbiology, 17, 201206. 2, 33Google Scholar
Snijders, T. A. B., and Nowicki, K. 1997. Estimation and prediction for stochastic blockmodels for graphs with latent block structure. Journal of Classification, 14(1), 75100. 298, 300Google Scholar
Sokal, R. R., and Michener, C. D. 1958. A statistical method for evaluating systematic relationships. University of Kansas Scientific Bulletin, 38, 14091438. 2, 33Google Scholar
Sokal, R. R., and Sneath, P. H. A. 1963. Principles of Numerical Taxonomy. San Francisco: W. H. Freeman & Co. 2Google Scholar
Souza, F. A. A., and Araújo, R. 2014. Mixture of partial least squares experts and application in prediction settings with multiple operating modes. Chemometrics and Intelligent Laboratory Systems, 130, 192202. 350Google Scholar
Spearman, C. 1904. The proof and measurement of association between two things. American Journal of Psychology, 15, 72101. 229, 238Google Scholar
Stanford, D. C., and Raftery, A. E. 2000. Principal curve clustering with noise. IEEE Transactions on Pattern Analysis and Machine Analysis, 22, 601609. 53, 87, 105, 382Google Scholar
Steane, M. A., McNicholas, P. D., and Yada, R. Y. 2012. Model-based classification via mixtures of multivariate t-factor analyzers. Communications in Statistics. Simulation and Computation, 41(4), 510523. 261Google Scholar
Steele, R. J., and Raftery, A. E. 2010. Performance of Bayesian model selection criteria for Gaussian mixture models. Pages 113–130 of: Chen, M. H. (ed.), Frontiers of Statistical Decision Making and Bayesian Analysis. New York: Springer. 77Google Scholar
Steinley, D., and Brusco, M. J. 2008. Selection of variables in cluster analysis: An empirical comparison of eight procedures. Psychometrika, 73, 125144. 201Google Scholar
Stephens, M. 2000a. Bayesian analysis of mixture models with an unknown number of components—an alternative to reversible jump methods. Annals of Statistics, 28(1), 4074. 288Google Scholar
Stephens, M. 2000b. Dealing with label switching in mixture models. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 62, 795809. 107, 183Google Scholar
Stephenson, W. 1936. Introduction of inverted factor analysis with some applications to studies in orexia. Journal of Educational Psychology, 5, 353367. 2Google Scholar
Stone, M. 1974. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society. Series B (Methodological), 36, 111147. 132Google Scholar
Street, W. N., Wolberg, W. H., and Mangasarian, O. L. 1993. Nuclear feature extraction for breast tumor diagnosis. Pages 861–871 of: Biomedical Image Processing and Biomedical Visualization, vol. 1905. International Society for Optics and Photonics. 7Google Scholar
Sun, Y., Han, J., Gao, J., and Yu, Y. 2009. iTopicModel: Information network-integrated topic modeling. Pages 493–502 of: Ninth IEEE International Conference on Data Mining. ICDM’09. IEEE. 382Google Scholar
Tadesse, M. G., Sha, N., and Vannucci, M. 2005. Bayesian variable selection in clustering high-dimensional data. Journal of the American Statistical Association, 100, 602617. 200, 213Google Scholar
Tanner, Martin A., and Jacobs, R. A. 2001. Neural networks and related statistical latent variable models. Pages 10526–10534 of: Smelser, Neil J., and Baltes, Paul B. (eds.), International Encyclopedia of the Social and Behavioral Sciences. Elsevier. 350Google Scholar
Tantrum, J. M., Murua, A., and Stuetzle, W. 2003. Assessment and pruning of hierarchical model based clustering. Pages 197–205 of: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD’03. New York, NY, USA: ACM. 101Google Scholar
Tarassenko, L., Hayton, P., Cerneaz, N., and Brady, M. 1995. Novelty detection for the identification of masses in mammograms. Pages 442–447 of: Fourth International Conference on Artificial Neural Networks. 161Google Scholar
Tax, D., and Duin, R. 1999. Outlier detection using classifier instability. Pages 251–256 of: Amin, A., Dori, D., Pudil, P., and Freeman, H. (eds.), Advances in Pattern Recognition. Heidelberg: Springer. 161Google Scholar
Thompson, T. J., Smith, P. J., and Boyle, J. P. 1998. Finite mixture models with concomitant information: assessing diagnostic criteria for diabetes. Journal of the Royal Statistical Society. Series C (Applied Statistics), 47, 393404. 349Google Scholar
Tibshirani, R., and Walther, G. 2005. Cluster validation by prediction strength. Journal of Computational and Graphical Statistics, 14, 511528. 101Google Scholar
Tiedeman, D. V. 1955. On the study of types. Pages 1–14 of: Sells, S. B. (ed.), Symposium on Pattern Analysis. Randolph Field, Tex.: USAF School of Aviation Medicine, Air University. 73Google Scholar
Tipping, M. E., and Bishop, C. M. 1997. Probabilistic principal component analysis. Tech. rept. NCRG-97-010. Neural Computing Research Group, Aston University. 229Google Scholar
Tipping, M. E., and Bishop, C. M. 1999. Mixtures of probabilistic principal component analysers. Neural Computation, 11(2), 443482. 246, 248, 249, 257Google Scholar
Titterington, D. M., Smith, A. F. M., and Makov, U. E. 1985. Statistical Analysis of Finite Mixture Distributions. Wiley. 14, 31, 92, 105, 106Google Scholar
Tortora, C., Franczak, B. C., Browne, R. P., and McNicholas, P. D. 2014. Mixtures of Multiple Scaled Generalized Hyperbolic Distributions. arXiv:1403.2332. 291Google Scholar
Tortora, C., Browne, R. P., Franczak, B. C., and McNicholas., P. D. 2015a. MixGHD: Model Based Clustering, Classification and Discriminant Analysis Using the Mixture of Generalized Hyperbolic Distributions. R package version 1.5. 285Google Scholar
Tortora, C., McNicholas, P. D., and Browne, R. P. 2015b. A mixture of generalized hyperbolic factor analyzers. Advances in Data Analysis and Classification, 1–18. 291Google Scholar
Tortora, C., Franczak, B. C., Browne, R. P., and McNicholas, P. D. 2018. A mixture of coalesced generalized hyperbolic distributions. Journal of Classification, To appear. 291Google Scholar
Toussile, W., and Gassiat, E. 2009. Variable selection in model-based clustering using multilocus genotype data. Advances in Data Analysis and Classification, 3, 109134. 212Google Scholar
Tryon, R. C. 1939. Cluster Analysis: Correlation Profile and Orthometric (Factor) Analysis for the Isolation of Unities in Mind and Personality. Edwards Brothers. 2Google Scholar
Turner, R. 2014. mixreg: Functions to fit mixtures of regressions. R package version 0.0-5. 340Google Scholar
Uebersax, J. S. 2010. Latent Structure Analysis. www.john-uebersax.com/stat/.184, 197Google Scholar
Uebersax, J. S., and Grove, W. M. 1993. A latent trait finite mixture model for the analysis of rating agreement. Biometrics, 49, 823835. 166Google Scholar
van den Boogaart, K. G. 2009. compositions: Compositional Data Analysis. R package version 1.10-2. 306Google Scholar
Vandewalle, V. 2009. Estimation et sélection en classification semi-supervisée. Ph.D. thesis, Université de Lille 1. 171Google Scholar
Vandewalle, V., Biernacki, C., Celeux, G., and Govaert, G. 2013. A predictive deviance criterion for selecting a generative model in semi-supervised classification. Computational Statistics and Data Analysis, 64, 220236. 140, 141Google Scholar
Vannoorenbergue, P., and Denoeux, T. 2002. Handling uncertain labels in multiclass problems using belief decision trees. In: Proceedings of IPMU’2002. 161Google Scholar
Vapnik, V. 1998. The Nature of Statistical Learning Theory. New York: Springer. 111Google Scholar
Verleysen, M. 2003. Learning high-dimensional data. Pages 141–162 of: Ablameyko, S., Gori, M., Goras, L., and Piuri, V. (eds.), Limitations and Future Trends in Neural Computations. NATO Science Series, III: Computer and Systems Sciences, vol. 186. IOS Press. 222Google Scholar
Verleysen, M., and François, D. 2005. The curse of dimensionality in data mining and time series prediction. Pages 758–770 of: Cabestany, J., Prieto, A., and Sandoval, F. (eds.), Computational Intelligence and Bioinspired Systems. Berlin, Heidelberg: Springer. 222Google Scholar
Vermunt, J. K., and Magidson, J. 2005. Technical Guide for Latent GOLD 4.0: Basic and Advanced. www.statisticalinnovations.com. 185, 198Google Scholar
Volant, S., Bérard, C., Martin-Magniette, M.-L., and Robin, S. 2014. Hidden Markov models with mixtures as emission distributions. Statistics and Computing, 214, 493504. 108Google Scholar
Von Mises, R. 1945. On the classification of observation data into distinct groups. Annals of Mathematical Statistics, 16(1), 6873. 6, 110Google Scholar
Vrbik, I., and McNicholas, P. D. 2012. Analytic calculations for the EM algorithm for multivariate skew-t mixture models. Statistics and Probability Letters, 82, 11691174. 290Google Scholar
Vrbik, I., and McNicholas, P. D. 2014. Parsimonious skew mixture models for model-based clustering and classification. Computational Statistics and Data Analysis, 71, 196210. 160, 290Google Scholar
Wald, A. 1939. Contributions to the theory of statistical estimation and testing hypotheses. Annals of Mathematical Statistics, 10(4), 299326. 6Google Scholar
Wald, A. 1944. On a statistical problem arising in the classification of an individual into one of two groups. Annals of Mathematical Statistics, 15(2), 145162. 6, 110Google Scholar
Wald, A. 1949. Statistical decision functions. Annals of Mathematical Statistics, 165–205. 6Google Scholar
Wallace, C. S., and Freeman, P. 1987. Estimation and inference via compact coding. Journal of the Royal Statistical Society. Series B (Methodological), 49(3), 241252. 200Google Scholar
Wallace, M. L., Buysse, D. J., Germain, A., Hall, M. H., and Iyenbar, S. 2018. Variable selection for skewed model-based clustering: Application to the identification of novel sleep phenotypes. Journal of the American Statistical Association, 113, 95110. 216Google Scholar
Wang, K., Ng, A., and McLachlan., G. J. 2013. EMMIXskew: The EM Algorithm and Skew Mixture Distribution. R package version 1.0.1. 261, 268, 269, 272Google Scholar
Wang, N., and Raftery, A. E. 2002. Nearest neighbor variance estimation (NNVE): Robust covariance estimation via nearest neighbor cleaning (with discussion). Journal of the American Statistical Association, 97, 9941019. 106Google Scholar
Wang, S., and Zhu, J. 2008. Variable selection for model-based high-dimensional clustering and its application to microarray data. Biometrics, 64, 440448. 208Google Scholar
Wang, W.-L., and Lin, T.-I. 2013. An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers. Computational Statistics, 28(2), 751769. 289Google Scholar
Wang, Y.-Q. 2013. E-PLE: An algorithm for image inpainting. Image Processing On Line, 3, 271285. 373, 374Google Scholar
Ward, J. H. 1963. Hierarchical groupings to optimize an objective function. Journal of the American Statistical Association, 58, 234244. 33, 75Google Scholar
Wasserman, S., and Faust, K. 1994. Social Network Analysis: Methods and Applications. Cambridge University Press. 294Google Scholar
Wasserman, S., Robins, G., and Steinley, D. 2007. Statistical models for networks: A brief review of some recent research. Pages 45–56 of: Airoldi, E. M., Blei, D. M., Fienberg, S. E., Goldenberg, A., Xing, E. P., and Zheng, A. X. (eds.), Statistical Network Analysis: Models, Issues, and New Directions. Lecture Notes in Computer Science, vol. 4503. Springer Berlin Heidelberg. 294Google Scholar
Wehrens, R., Buydens, L. M. C., Fraley, C., and Raftery, A. E. 2004. Model-based clustering for image segmentation and large datasets via sampling. Journal of Classification, 21, 231253. 35, 383Google Scholar
Welch, B. L. 1939. Note on discriminant functions. Biometrika, 31(1/2), 218220. 6Google Scholar
West, M., and Harrison, P. J. 1989. Bayesian Forecasting and Dynamic Models. New York: Springer-Verlag. 108Google Scholar
White, A., and Murphy, T. B. 2016a. Exponential family mixed membership models for soft clustering of multivariate data. Advances in Data Analysis and Classification, 10(4), 521540. 306Google Scholar
White, A., and Murphy, T. B. 2016b. Mixed membership of experts stochastic block model. Network Science, 4(1), 4880. 329, 350Google Scholar
White, A., Chan, J., Hayes, C., and Murphy, T. B. 2012. Mixed membership models for exploring user roles in online fora. Pages 599–602 of: Breslin, J., Ellison, N., Shanahan, J.G., and Tufekci, Z. (eds.), Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media (ICWSM 2012). AAAI Press. 306Google Scholar
White, A., Wyse, J., and Murphy, T. B. 2016. Bayesian variable selection for latent class analysis using a collapsed gibbs sampler. Statistics and Computing, 26, 511527. 211, 212, 213Google Scholar
Wilson, D. R., and Martinez, T. R. 1997. Instance pruning techniques. Pages 403–411 of: Proceedings of the Fourteenth International Conference on Machine Learning. ICML’97. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. 161Google Scholar
Witten, D. M., and Tibshirani, R. 2010. A framework for feature selection in clustering. Journal of American Statistical Association, 105, 713726. 77, 201Google Scholar
Wold, S., Sjöström, M., and Eriksson, L. 2001. PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109130. 235Google Scholar
Wolfe, J. H. 1963. Object cluster analysis of social areas. M.Phil. thesis, University of California, Berkeley. 3, 73Google Scholar
Wolfe, J. H. 1965. A Computer Program for the Maximum-Likelihood Analysis of Types. USNPRA Technical Bulletin 65-15. U.S. Naval Personnel Research Activity, San Diego. 3, 74, 75Google Scholar
Wolfe, J. H. 1967. NORMIX: Computational Methods for Estimating the Parameters of Multivariate Normal Mixture Distributions of Types. USNPRA Technical Bulletin 68-2. U.S. Naval Personnel Research Activity, San Diego. 3, 75Google Scholar
Wolfe, J. H. 1970. Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Research, 5, 329350. 3, 75Google Scholar
Wolfe, J. H. 2018. Personnal communication. 73Google Scholar
Wu, C. F. J. 1983. On convergence properties of the EM algorithm. Annals of Statistics, 11, 95–103. 23Google Scholar
Wyse, J., and Friel, N. 2012. Block clustering with collapsed latent block models. Statistics and Computing, 22(2), 415428. 374, 383Google Scholar
Wyse, J., Friel, N., and Latouche, P. 2017. Inferring structure in bipartite networks using the latent blockmodel and exact ICL. Network Science, 5(1), 4569. 383Google Scholar
Xie, B., Pan, W., and Shen, X. 2008. Penalized model-based clustering with cluster-specific diagonal covariance matrices and grouped variables. Electronic Journal of Statistics, 2, 168212. 208Google Scholar
Xing, E. P., Fu, W., and Song, L. 2010. A state-space mixed membership blockmodel for dynamic network tomography. Annals of Applied Statistics, 4(2), 535566. 329, 330Google Scholar
Xu, K. S., and Hero, A. O. 2014. Dynamic stochastic blockmodels for time-evolving social networks. IEEE Journal of Selected Topics in Signal Processing, 8(4), 552562. 329Google Scholar
Yamamoto, M., and Hwang, H. 2017. Dimension-reduced clustering of functional data via subspace separation. Journal of Classification, 34(2), 294326. 382Google Scholar
Yang, T., Chi, Y., Zhu, S., Gong, Y., and Jin, R. 2011. Detecting communities and their evolutions in dynamic social networks—a Bayesian approach. Machine Learning, 82(2), 157189. 329Google Scholar
Yeung, D.-Y., and Chow, C. 2002. Parzen window network intrusion detectors. Pages 385–388 of: Object recognition supported by user interaction for service robots. 161Google Scholar
Yeung, K. Y., Fraley, C., Murua, A., Raftery, A. E., and Ruzzo, W. L. 2001. Model-based clustering and data transformations for gene expression data. Bioinformatics, 17, 977987. 78Google Scholar
Yi, J., Zhang, L., Yang, T., Liu, W., and Wang, J. 2015. An efficient semi-supervised clustering algorithm with sequential constraints. Pages 1405–1414 of: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. 160Google Scholar
Yoshida, R., Higuchi, T., and Imoto, S. 2004. A mixed factor model for dimension reduction and extraction of a group structure in gene expression data. Pages 161–172 of: Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference, vol. 8. 241Google Scholar
Yoshida, R., Higuchi, T., Imoto, S., and Miyano, S. 2006. Array cluster: An analytic tool for clustering, data visualization and model finder on gene expression profiles. Bioinformatics, 22, 15381539. 241Google Scholar
Young, W. C., Raftery, A. E., and Yeung, K. Y. 2017. Model-based clustering with data correction for removing artifacts in gene expression data. Annals of Applied Statistics, 11, 19982026. 78Google Scholar
Yu, G., Sapiro, G., and Mallat, S. 2012. Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity. IEEE Transactions on Image Processing, 21(5), 24812499. 372, 373Google Scholar
Yuksel, S. E. 2012. Twenty years of mixture of experts. Neural Networks and Learning, 23(8), 11771193. 350Google Scholar
Zachary, W. 1977. An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33(4), 452473. 11, 302Google Scholar
Zanghi, H., Ambroise, C., and Miele, V. 2008. Fast online graph clustering via Erdös-Rényi mixture. Pattern Recognition, 41, 35923599. 300Google Scholar
Zanghi, H., Volant, S., and Ambroise, C. 2010. Clustering based on random graph model embedding vertex features. Pattern Recognition Letters, 31, 830836. 329Google Scholar
Zeng, H., and Cheung, Y. M. 2014. Learning a mixture model for clustering with the completed likelihood minimum message length criterion. Pattern Recognition, 47, 20112030. 108Google Scholar
Zeng, X., and Martinez, T. 2003. A noise filtering method using neural networks. Pages 26– 31 of: IEEE International Workshop on Soft Computing Techniques in Instrumentation, Measurement and Related Applications. 161Google Scholar
Zhang, N. L. 2004. Hierarchical latent class models for cluster analysis. Journal of Machine Learning Research, 5, 697723. 198Google Scholar
Zhang, Z., Chan, K. L., Wu, Y., and Chen, C. 2004. Learning a multivariate Gaussian mixture model with the reversible jump MCMC algorithm. Statistics and Computing, 14, 343355. 107Google Scholar
Zhao, J., Jin, L., and Shi, L. 2015. Mixture model selection via hierarchical BIC. Computational Statistics and Data Analysis, 88, 139153. 107Google Scholar
Zhou, H., Pan, W., and Shen, X. 2009. Penalized model-based clustering with unconstrained covariance matrices. Electronic Journal of Statistics, 3, 14731496. 202, 208, 209Google Scholar
Zhu, X., Wu, X., and Chen, Q. 2003. Eliminating class noise in large datasets. Pages 920–927 of: Proceedings of the Twentieth International Conference on Machine Learning. ICML’03. AAAI Press. 161Google Scholar
Zou, H., Hastie, T., and Tibshirani, R. 2007. On the “degrees of freedom” of the lasso. Annals of Statistics, 35(5), 21732192. 209Google Scholar
Zreik, R., Latouche, P., and Bouveyron, C. 2017. The dynamic random subgraph model for the clustering of evolving networks. Computational Statistics, 32, 501533. 330Google Scholar
Zubin, J. 1938. A technique for measuring likemindedness. Journal of Abnormal Psychology, 33, 508516. 2Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×