Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T04:29:34.710Z Has data issue: false hasContentIssue false

17 - Latent inhibition in schizophrenia and schizotypy: a review of the empirical literature

from Current topics in latent inhibition research

Published online by Cambridge University Press:  04 August 2010

Robert Lubow
Affiliation:
Tel-Aviv University
Ina Weiner
Affiliation:
Tel-Aviv University
Get access

Summary

Introduction

Schizophrenia is a severe neuropsychiatric disorder of unknown aetiology. The condition is clinically heterogeneous and affects virtually all areas of life, often resulting in disabling cognitive, perceptual, and emotional symptoms. The symptoms of schizophrenia are generally classified as positive (e.g. hallucinations and delusions), negative (e.g. anhedonia, alogia, thought paucity) and cognitive (e.g. thought disorder, bizarre thinking). The disease course is often chronic and the financial cost on the health-care system and society is tremendous, in addition to the personal consequences of the illness for friends and family of sufferers (Mangalore & Knapp,2007; McEvoy, 2007). Tragically, a substantial number of patients commit suicide.

The most successful treatments for schizophrenia that are currently prescribed are pharmacological, and most of these involve blockade of striatal dopamine receptors (Kapur & Remington, 2001). These treatments are successful in reducing the acute symptoms of the condition but provide no cure; accordingly, the need for a better understanding of the aetiology and pathophysiology of schizophrenia and the development of novel treatments is considerable. Drug development draws on many experimental strategies as well as on serendipity (Carpenter & Koenig, 2008; Javitt et al., 2008); translational models such as latent inhibition (LI) play an important role in the strategic effort to develop new treatments (Weiner, 2003). Indeed, a wealth of animal data exist that support the utility of the LI paradigm in studies of antipsychotic treatments (e.g., Weiner, this volume).

Type
Chapter
Information
Latent Inhibition
Cognition, Neuroscience and Applications to Schizophrenia
, pp. 417 - 447
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agid, O., Kapur, S., Warrington, L., Loebel, A., & Siu, C. (2008). Early onset of antipsychotic response in the treatment of acutely agitated patients with psychotic disorders. Schizophrenia Research, 102, 241–248.CrossRefGoogle ScholarPubMed
Allan, L. M., William, J. H., Wellman, N. A., et al. (1995). Effects of tobacco smoking, schizotypy, and number of pre-exposures on latent inhibition in healthy subjects. Personality and Individual Differences, 19, 893–902.CrossRefGoogle Scholar
Arad, M., & Weiner, I. (2008). Fluctuation of latent inhibition along the estrous cycle in the rat: modeling the cyclicity of symptoms in schizophrenic women?Psychoneuroendocrinology, 33, 1401–1410.CrossRefGoogle ScholarPubMed
Arranz, M. J., & Leon, J. (2007). Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Molecular Psychiatry, 12, 707–747.CrossRefGoogle Scholar
Baruch, I., Hemsley, D. R., & Gray, J. A. (1988a). Differential performance of acute and chronic schizophrenics in a latent inhibition task. Journal of Nervous & Mental Diseases, 176, 598–606.CrossRefGoogle Scholar
Baruch, I., Hemsley, D. R., & Gray, J. A. (1988b). Latent inhibition and “psychotic proneness” in normal subjects. Personality and Individual Differences, 9, 777–783.CrossRefGoogle Scholar
Bentall, R. P., Claridge, G. S., & Slade, P. D. (1989). The multidimensional nature of schizotypal traits: a factor analytic study with normal subjects. British Journal of Clinical Psychology, 28, 363–375.CrossRefGoogle ScholarPubMed
Bleuler, E. (1950). Dementia Praecox or the Group of Schizophrenias (J. Zinkin, Trans.). New York: International Universities Press.Google Scholar
Braunstein-Bercovitz, H. (2000). Is the attentional dysfunction in schizotypy related to anxiety?Schizophrenia Research, 46, 255–267.CrossRefGoogle ScholarPubMed
Braunstein-Bercovitz, H., Hen, I., & Lubow, R. E. (2004). Masking task load modulates latent inhibition: support for a distraction model of irrelevant information processing by high schizotypals. Cognition and Emotion, 18, 1135–1144.CrossRefGoogle Scholar
Braunstein-Bercovitz, H., & Lubow, R. E. (1998). Are high-schizotypal normal participants distractible or limited in attentional resources? A study of latent inhibition as a function of masking task load and schizotypy level. Journal of Abnormal Psychology, 107, 659–670.CrossRefGoogle ScholarPubMed
Buckley, P. F., Miller, B. J., Lehrer, D. S., & Castle, D. J. (2009). Psychiatric comorbidities and schizophrenia. Schizophrenia Bulletin, 35, 383–402.CrossRefGoogle Scholar
Burch, G. S., Hemsley, D. R., & Joseph, M. H. (2004). Trials-to-criterion latent inhibition in humans as a function of stimulus pre-exposure and positive-schizotypy. British Journal of Psychology, 95, 179–196.CrossRefGoogle ScholarPubMed
Calkins, M. E., Iacono, W. G., & Ones, D. S. (2008). Eye movement dysfunction in first-degree relatives of patients with schizophrenia: a meta-analytic evaluation of candidate endophenotypes. Brain and Cognition, 68, 436–461.CrossRefGoogle ScholarPubMed
Carpenter, W. T., & Koenig, J. I. (2008). The evolution of drug development in schizophrenia: past issues and future opportunities. Neuropsychopharmacology, 33, 2061–2079.CrossRefGoogle ScholarPubMed
Chapman, L. J., Chapman, J. P., & Kwapil, T. R. (1995). Scales for the measurement of schizotypy. In Raine, A., Lencz, T., & Mednick, S. A. (Eds.), Schizotypal Personality. New York: Cambridge University Press.Google Scholar
Claridge, G. S., & Broks, P. (1984). Schizotypy and hemisphere function. I. Theoretical considerations and measurement of schizotypy. Personality and Individual Differences, 5, 633–648.CrossRefGoogle Scholar
Cohen, E., Sereni, N., Kaplan, O., et al. (2004). The relation between latent inhibition and symptom-types in young schizophrenics. Behavioural Brain Research, 149, 113–122.CrossRefGoogle ScholarPubMed
Costa, P. T., & McCrae, R. R. (1992). Revised NEO Personality Inventory: Professional Manual. Florida: Psychological Assessment Resources Inc.Google Scholar
Casa, L. G., Ruiz, G., & Lubow, R. E. (1993). Latent inhibition and recall/recognition of irrelevant stimuli as a function of pre-exposure duration in high and low psychotic-prone normal subjects. British Journal of Psychology, 84, 119–132.CrossRefGoogle ScholarPubMed
Della Casa, V., Höfer, I., Weiner, I., & Feldon, J. (1999). Effects of smoking status and schizotypy on latent inhibition. Journal of Psychopharmacology, 13, 45–57.CrossRefGoogle ScholarPubMed
Dunn, L. A., Atwater, G., & Kilts, C. D. (1993). Effects of antipsychotic drugs on latent inhibition: sensitivity and specificity of an animal behavioural model of clinical drug action. Psychopharmacology, 112, 315–323.CrossRefGoogle ScholarPubMed
Evans, L. H., Gray, N. S., & Snowden, R. J. (2007). A new continuous within-participants latent inhibition task: examining associations with schizotypy dimensions, smoking status and gender. Biological Psychology, 74, 365–373.CrossRefGoogle ScholarPubMed
Eysenk, H. J. (1967). The Biological Basis of Personality. Springfield, IL: Charles C Thomas.Google Scholar
Eysenck, H. J., & Eysenck, S. B. G. (1975). Manual of the Eysenck Personality Questionnaire. London: Hodder and Stoughton.Google Scholar
Eysenck, H. J., & Eysenck, S. B. G. (1991). Manual of the Eysenck Personality Scales. London: Hodder and Stoughton.Google Scholar
Fanous, A. H., Neale, M. C., Gardner, C. O., et al. (2007). Significant correlation in linkage signals from genome-wide scans of schizophrenia and schizotypy. Molecular Psychiatry, 12, 958–965.CrossRefGoogle ScholarPubMed
Gal, G., Barnea, Y., Biran, L., et al. (2009). Enhancement of latent inhibition in patients with chronic schizophrenia. Behavioural Brain Research, 197, 1–8.CrossRefGoogle ScholarPubMed
Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry, 160, 636–645.CrossRefGoogle ScholarPubMed
Gray, J. A. (1998). Integrating schizophrenia. Schizophrenia Bulletin, 24, 249–266.CrossRefGoogle ScholarPubMed
Gray, J. A., Feldon, J., Rawlins, J. N. P., Hemsley, D. R., & Smith, A. D. (1991). The neuropsychology of schizophrenia. Behavioral and Brain Sciences, 14, 1–84.CrossRefGoogle Scholar
Gray, J. A., Kumari, V., Lawrence, N., & Young, A. M. J. (1999). Functions of the dopaminergic innervation of nucleus accumbens. Psychobiology, 27, 225–235.Google Scholar
Gray, N. S., Fernandez, M., Williams, J., Ruddle, R. A., & Snowden, R. J. (2002). Which schizotypal dimensions abolish latent inhibition?British Journal of Clinical Psychology, 41, 271–284.CrossRefGoogle ScholarPubMed
Gray, N. S., Hemsley, D. R., & Gray, J. A. (1992a). Abolition of latent inhibition in acute, but not chronic, schizophrenics. Neurology Psychiatry and Brain Research, 1, 83–89.Google Scholar
Gray, N. S., Pickering, A. D., Hemsley, D. R., Dawling, S., & Gray, J. A. (1992b). Abolition of latent inhibition by a single 5 mg dose of d-amphetamine in man. Psychopharmacology, 107, 425–430.CrossRefGoogle ScholarPubMed
Gray, N. S., Pilowsky, L. S., Gray, J. A., & Kerwin, R. W. (1995). Latent inhibition in drug-naive schizophrenics: relationship to duration of illness and dopamine D2 binding using SPET. Schizophrenia Research, 17, 95–107.CrossRefGoogle ScholarPubMed
Guterman, Y., Josiassen, R. C., Bashore, T. E., Johnson, M., & Lubow, R. E. (1996). Latent inhibition effects reflected in event-related brain potentials in healthy controls and schizophrenics. Schizophrenia Research, 20, 315–326.CrossRefGoogle ScholarPubMed
Gruzelier, J. (2002). A Janusian perspective on the nature, development and structure of schizophrenia and schizotypy. Schizophrenia Research, 54, 95–103.CrossRefGoogle ScholarPubMed
Heinrichs, R. W., & Zakzanis, K. K. (1998). Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 12, 426–445.CrossRefGoogle Scholar
Hemsley, D. R. (1987). An experimental psychological model for schizophrenia. In Hafner, H., Gattaz, W. F. & , W. Janzavik W. (Eds.), Search for the Causes of Schizophrenia. Berlin: Springer, pp. 179–188.CrossRefGoogle Scholar
Hemsley, D. R. (1993). A simple (or simplistic?) cognitive model for schizophrenia. Behavior Research and Therapy, 31, 633–645.CrossRefGoogle Scholar
Höfer, I., Della Casa, V., & Feldon, J. (1999). The interaction between schizotypy and latent inhibition: modulation by experimental parameters. Personality and Individual Differences, 26, 1075–1088.CrossRefGoogle Scholar
Hutton, S. B., & Ettinger, U. (2006). The antisaccade task as a research tool in psychopathology: a critical review. Psychophysiology, 43, 302–313.CrossRefGoogle ScholarPubMed
Javitt, D. C., Spencer, K. M., Thaker, G. K., Winterer, G., & Hajós, M. (2008). Neurophysiological biomarkers for drug development in schizophrenia. Nature Reviews Drug Discovery, 7, 68–83.CrossRefGoogle Scholar
Kaplan, O., Dar, R., Rosenthal, L., et al. (2006). Obsessive-compulsive disorder patients display enhanced latent inhibition on a visual search task. Behavior Research and Therapy, 44, 1137–1145.CrossRefGoogle ScholarPubMed
Kathmann, N., Recum, S., Haag, C., & Engel, R. R. (2000). Electrophysiological evidence for reduced latent inhibition in schizophrenic patients. Schizophrenia Research, 45, 103–114.CrossRefGoogle ScholarPubMed
Kapur, S., Arenovich, T., Agid, O., et al. (2005). Evidence for onset of antipsychotic effects within the first 24 hours of treatment. American Journal of Psychiatry, 162, 939–946.CrossRefGoogle Scholar
Kapur, S., & Remington, G. (2001). Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biological Psychiatry, 50, 873–83.CrossRefGoogle ScholarPubMed
Kay, S. R., Fiszbein, P. S., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13, 261–276.CrossRefGoogle Scholar
Kraepelin, E. (1919/1971). Dementia Praecox and Paraphrenia (Barclay, R.M., Trans.). Huntington, NY: Krieger.Google Scholar
Kumari, V., Cotter, P., Mulligan, O., et al. (1999). Effect of d-amphetamine and haloperidol on latent inhibition in healthy male volunteers. Journal of Psychopharmacology, 13, 398–405.CrossRefGoogle ScholarPubMed
Kumari, V., Das, M., Zachariah, E., Ettinger, U., & Sharma, T. (2005). Reduced prepulse inhibition in unaffected siblings of schizophrenia patients. Psychophysiology, 42, 588–594.CrossRefGoogle ScholarPubMed
Larrison, A. L., Briand, K. A., & Sereno, A. B. (1999). Nicotine, caffeine, alcohol, and schizotypy. Personality and Individual Differences, 27, 101–108.CrossRefGoogle Scholar
Launay, G., & Slade, P. (1981). The measurement of hallucinatory predisposition in male and female prisoners. Personality and Individual Differences, 2, 221–234.CrossRefGoogle Scholar
Lenzenweger, M. F. (1998). Explorations in schizotypy and the psychometric high-risk paradigm. In Chapman, L. J., Chapman, J. P., & Fowler, D. C. (Eds.), Progress in Experimental Personality and Psychopathological Research, vol. 16. New York: Springer.Google Scholar
Leumann, L., Feldon, J., Vollenweider, F. X., & Ludewig, K. (2002). Effects of typical and atypical antipsychotics on prepulse inhibition and latent inhibition in chronic schizophrenia. Biological Psychiatry, 52, 729–739.CrossRefGoogle ScholarPubMed
Lipp, O. V., Siddle, D. A. T., & Arnold, S. L. (1994). Psychosis-proneness in a non-clinical sample. II. A multi-experimental study of ‘attentional malfunctioning’. Personality and Individual Differences, 15, 405–424.CrossRefGoogle Scholar
Lipp, O. V., & Vaitl, D. (1992). Latent inhibition in human Pavlovian differential conditioning: effect of additional stimulation after preexposure and relation to schizotypal traits. Personality and Individual Differences, 13, 1003–1012.CrossRefGoogle Scholar
Lubow, R. E. (2005). The construct validity of the animal-latent inhibition model of selective attention deficits in schizophrenia. Schizophrenia Bulletin, 31, 139–153.CrossRefGoogle Scholar
Lubow, R. E., & Casa, G. (2002). Latent inhibition as a function of schizotypality and gender: implications for schizophrenia. Biological Psychology, 59, 69–86.CrossRefGoogle Scholar
Lubow, R. E., Ingberg-Sachs, Y., Zalstein-Orda, N., & Gewirtz, J. C. (1992). Latent inhibition in low and high “psychotic-prone” normal subjects. Personality and Individual Differences, 13, 563–572.CrossRefGoogle Scholar
Lubow, R. E., Kaplan, O., Abramovich, P., Rudnick, A., & Laor, N. (2000). Visual search in schizophrenia: latent inhibition and novel pop-out effects. Schizophrenia Research, 45, 145–156.CrossRefGoogle ScholarPubMed
Lubow, R. E., Kaplan, O., & Casa, G. (2001). Performance on the visual search analog of latent inhibition is modulated by an interaction between schizotypy and gender. Schizophrenia Research, 52, 275–287.CrossRefGoogle ScholarPubMed
Lubow, R. E., Weiner, I., Scholossberg, A., & Baruch, I. (1987). Latent inhibition and schizophrenia. Bulletin of Psychonomic Society, 25, 464–467.CrossRefGoogle Scholar
Mangalore, R., & Knapp, M. (2007). Cost of schizophrenia in England. The Journal of Mental Health Policy and Economics, 10, 23–41.Google ScholarPubMed
Marcelis, M., Suckling, J., Woodruff, P., et al. (2003). Searching for a structural endophenotype in psychosis using computational morphometry. Psychiatry Research, 122, 153–167.CrossRefGoogle ScholarPubMed
Mason, O., Claridge, G., & Jackson, M. (1995). New scales for the assessment of schizotypy. Personality and Individual Differences, 18, 7–13.CrossRefGoogle Scholar
McEvoy, J. P. (2007). The costs of schizophrenia. Journal of Clinical Psychiatry, 68, 4–7.Google ScholarPubMed
Meehl, P. E. (1989). Schizotaxia revisited. Archives of General Psychiatry, 46, 935–944.CrossRefGoogle ScholarPubMed
Moser, P. C., Hitchcock, J. M., Lister, S., & Moran, P. M. (2000). The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Research Reviews, 33, 275–307.CrossRefGoogle ScholarPubMed
Nuechterlein, K. H., & Dawson, M. E. (1984). Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophrenia Bulletin, 10, 160–203.CrossRefGoogle ScholarPubMed
Overall, J. E., & Gorham, D. R. (1962). The Brief Psychiatric Rating Scale. Psychological Reports, 10, 799–812.CrossRefGoogle Scholar
Phillips, L. J., Yung, A. R., Yuen, H. P., Pantelis, C., & McGorry, P. D. (2002). Prediction and prevention of transition to psychosis in young people at incipient risk for schizophrenia. American Journal of Medical Genetics, 114, 929–937.CrossRefGoogle ScholarPubMed
Prasad, K. M., & Keshavan, M. S. (2008). Structural cerebral variations as useful endophenotypes in schizophrenia: do they help construct “extended endophenotypes”?Schizophrenia Bulletin, 34, 774–790.CrossRefGoogle ScholarPubMed
Raine, A. (1991). The SPQ: a scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophrenia Bulletin, 17, 555–564.CrossRefGoogle ScholarPubMed
Raine, A. (2006). Schizotypal personality: neurodevelopmental and psychosocial trajectories. Annual Review of Clinical Psychology, 2, 291–326.CrossRefGoogle ScholarPubMed
Raine, A., Reynolds, C., Lencz, T., et al. (1994). Cognitive-perceptual, interpersonal, and disorganized features of schizotypal personality. Schizophrenia Bulletin, 20, 191–201.CrossRefGoogle ScholarPubMed
Rascle, C., Mazas, O., Vaiva, G., et al. (2001). Clinical features of latent inhibition in schizophrenia. Schizophrenia Research, 51, 149–161.CrossRefGoogle Scholar
Reichenberg, A., & Harvey, P. D. (2007). Neuropsychological impairments in schizophrenia: integration of performance-based and brain imaging findings. Psychological Bulletin, 133, 833–858.CrossRefGoogle ScholarPubMed
Reynolds, G. P. (2007). The impact of pharmacogenetics on the development and use of antipsychotic drugs. Drug Discovery Today, 12, 953–959.CrossRefGoogle ScholarPubMed
Ruob, C., Weiner, I., & Feldon, J. (1998). Haloperidol-induced potentiation of latent inhibition: interaction with parameters of conditioning. Behavioural Pharmacology, 9, 245–253.Google ScholarPubMed
Rust, J. (1989). Rust Inventory of Schizotypal Cognitions Manual. Kent: Psychological Corporation Ltd.Google Scholar
Salamone, J. D., Cousins, M. S., & Snyder, B. J. (1997). Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neuroscience and Biobehavioral Reviews, 21, 341–359.CrossRefGoogle ScholarPubMed
Serra, A. M., Jones, S. H., Toone, B., & Gray, J. A. (2001). Impaired associative learning in chronic schizophrenics and their first-degree relatives: a study of latent inhibition and the Kamin blocking effect. Schizophrenia Research, 48, 273–289.CrossRefGoogle Scholar
Shadach, E., Feldon, J., & Weiner, I. (1999). Clozapine-induced potentiation of latent inhibition is due to its action in the conditioning stage: Implications for the mechanism of action of antipsychotic drugs. International Journal of Neuropsychopharmacology, 2, 283–291.CrossRefGoogle ScholarPubMed
Skelley, S. L., Goldberg, T. E., Egan, M. F., Weinberger, D. R., & Gold, J. M. (2008). Verbal and visual memory: characterizing the clinical and intermediate phenotype in schizophrenia. Schizophrenia Research, 105, 78–85.CrossRefGoogle Scholar
Snitz, B. E., Macdonald, A. W., & Carter, C. S. (2006). Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophrenia Bulletin, 32, 179–194.CrossRefGoogle ScholarPubMed
Stevens, A., Peschk, I., & Schwarz, J. (2007). Implicit learning, executive function and hedonic activity in chronic polydrug abusers, currently abstinent polydrug abusers and controls. Addiction, 102(6), 937–946.CrossRefGoogle ScholarPubMed
Strauss, J. S. (1969). Hallucinations and delusions as points on continua function. Archives of General Psychiatry, 21, 581–586.CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Braff, D. L., Hartson, H., Perry, W., & Geyer, M. A. (1996). Latent inhibition in schizophrenia. Schizophrenia Research, 20, 91–103.CrossRefGoogle Scholar
Swerdlow, N. R., Hartston, H. J., & Hartman, P. L. (1999). Enhanced visual latent inhibition in obsessive-compulsive disorder. Biological Psychiatry, 45, 482–488.CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Stephany, N., Wasserman, L. C., et al. (2003). Dopamine agonists disrupt visual latent inhibition in normal males using a within-subject paradigm. Psychopharmacology, 169, 314–320.CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Stephany, N., Wasserman, L. C., et al. (2005). Intact visual latent inhibition in schizophrenia patients in a within-subject paradigm. Schizophrenia Research, 72, 169–183.CrossRefGoogle Scholar
Thaker, G. K. (2007). Schizophrenia endophenotypes as treatment targets. Expert Opinion on Therapeutic Targets, 11, 1189–206.CrossRefGoogle ScholarPubMed
Thornton, J. C., Dawe, S., Lee, C., et al. (1996). Effects of nicotine and amphetamine on latent inhibition in human subjects. Psychopharmacology, 127, 164–173.CrossRefGoogle ScholarPubMed
Tsakanikos, E. (2004). Latent inhibition, visual pop-out and schizotypy: is disruption of latent inhibition due to enhanced stimulus salience?Personality and Individual Differences, 37, 1347–1358.CrossRefGoogle Scholar
Os, J., Hanssen, M., Bijl, R. V., & Ravelli, A. (2000). Strauss (1969) revisited: a psychosis continuum in the general population?Schizophrenia Research, 45, 11–20.Google ScholarPubMed
Vaitl, D., Lipp, O., Bauer, U., et al. (2002). Latent inhibition and schizophrenia: Pavlovian conditioning of autonomic responses. Schizophrenia Research, 55, 147–158.CrossRefGoogle ScholarPubMed
Haren, N. E., Bakker, S. C., & Kahn, R. S. (2008). Genes and structural brain imaging in schizophrenia. Current Opinion in Psychiatry, 21, 161–167.CrossRefGoogle Scholar
Venables, P. H., Wilkins, S., Mitchell, D. A., Raine, A., & Bailes, K. (1990). A scale for the measurement of schizotypy. Personality and Individual Differences, 11, 481–495.CrossRefGoogle Scholar
Vollema, M. G., & Bosch, R. J. (1995). The multidimensionality of schizotypy. Schizophrenia Bulletin, 21, 19–31.CrossRefGoogle ScholarPubMed
Whalley, H. C., Harris, J. C., & Lawrie, S. M. (2007). The neurobiological underpinnings of risk and conversion in relatives of patients with schizophrenia. International Review of Psychiatry, 19, 383–397.CrossRefGoogle ScholarPubMed
Whalley, H. C., Simonotto, E., Flett, S., et al. (2004). fMRI correlates of state and trait effects in subjects at genetically enhanced risk of schizophrenia. Brain, 127, 478–490.CrossRefGoogle ScholarPubMed
Williams, J. H., Wellman, N. A., Geaney, D. P., et al. (1997). Haloperidol enhances latent inhibition in visual tasks in healthy people. Psychopharmacology, 133, 262–268.CrossRefGoogle ScholarPubMed
Williams, J. H., Wellman, N. A., Geaney, D. P., et al. (1998). Reduced latent inhibition in people with schizophrenia: an effect of psychosis or of its treatment?British Journal of Psychiatry, 172, 243–249.CrossRefGoogle ScholarPubMed
Williams, J. H., Wellman, N. A., & Rawlins, J. N. (1996). Cannabis use correlates with schizotypy in healthy people. Addiction, 91, 869–877.CrossRefGoogle ScholarPubMed
Weiner, I. (2003). The ‘two-headed’ latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology, 169, 257–297.CrossRefGoogle ScholarPubMed
Wuthrich, V., & Bates, T. C. (2001). Schizotypy and latent inhibition: non-linear linkage between psychometric and cognitive markers. Personality and Individual Differences, 30(5), 783–798.CrossRefGoogle Scholar
Yogev, H., Sirota, P., Gutman, Y., & Hadar, U. (2004). Latent inhibition and overswitching in schizophrenia. Schizophrenia Bulletin, 30(4), 713–726.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×