Book contents
- Frontmatter
- Contents
- Preface
- Turbulence in the Interstellar Medium: a Retrospective Review
- Mechanism of Formation of Atmospheric Turbulence Relevant for Optical Astronomy
- Properties of Atomic Gas in Spiral Galaxies
- Turbulence in the Ionized Gas in Spiral Galaxies
- Probing Interstellar Turbulence in the Warm Ionized Medium using Emission Lines
- The Spectrum & Galactic Distribution of MicroTurbulence in Diffuse Ionized Gas
- Small Scale Structure and Turbulence in the Interstellar Medium
- What is the Reynolds Number of the Reynolds' Layer?
- Photoionized Gas in the Galactic Halo
- Turbulent Heating of the Diffuse Ionized Gas
- Cosmic Rays in Interstellar Turbulence
- Turbulence in Line-Driven Stellar Winds
- An Introduction to Compressible MHD Turbulence
- Turbulence in Atomic Hydrogen
- Supershells in Spiral Galaxies
- The Size Distribution of Superbubbles in the Interstellar Medium
- Large-Scale Motions in the ISM of Elliptical and Spiral Galaxies
- Vortical Motions Driven by Supernova Explosions
- The Intermittent Dissipation of Turbulence: is it Observed in the Interstellar Medium?
- Chemistry in Turbulent Flows
- Supersonic Turbulence in Giant Extragalactic HII Regions
- Turbulence in HII regions: New results
- Hypersonic Turbulence of H2O Masers
- Water Masers Tracing Alfvenic Turbulence and Magnetic Fields in W51 M and W49 N
- Turbulence in the Ursa Major cirrus cloud
- The Collisions of HVCs with a Magnetized Gaseous Disk
- The Initial Stellar Mass Function as a Statistical Sample of Turbulent Cloud Structure
- The Structure of Molecular Clouds: are they Fractal?
- Diagnosing Properties of Turbulent Flows from Spectral Line Observations of the Molecular Interstellar Medium
- Centroid Velocity Increments as a Probe of the Turbulent Velocity Field in Interstellar Molecular Clouds
- High-Resolution C18O Mapping Observations of Heiles' Cloud 2 – Statistical Properties of the Line Width –
- Observations of Magnetic Fields in Dense Interstellar Clouds: Implications for MHD Turbulence and Cloud Evolution
- The Density PDFs of Supersonic Random Flows
- Turbulence as an Organizing Agent in the ISM
- Turbulence and Magnetic Reconnection in the Interstellar Medium
- The Evolution of Self-Gravitating, Magnetized, Turbulent Clouds: Numerical Experiments
- Super–Alfvénic Turbulent Fragmentation in Molecular Clouds
- Decay Timescales of MHD Turbulence in Molecular Clouds
- Numerical Magnetohydrodynamic Studies of Turbulence and Star Formation
- Direct Numerical Simulations of Compressible Magnetohydrodynamical Turbulence
- Fragmentation in Molecular Clouds: The Formation of a Stellar Cluster
- Accretion Disk Turbulence
- List of participants
Turbulence and Magnetic Reconnection in the Interstellar Medium
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Preface
- Turbulence in the Interstellar Medium: a Retrospective Review
- Mechanism of Formation of Atmospheric Turbulence Relevant for Optical Astronomy
- Properties of Atomic Gas in Spiral Galaxies
- Turbulence in the Ionized Gas in Spiral Galaxies
- Probing Interstellar Turbulence in the Warm Ionized Medium using Emission Lines
- The Spectrum & Galactic Distribution of MicroTurbulence in Diffuse Ionized Gas
- Small Scale Structure and Turbulence in the Interstellar Medium
- What is the Reynolds Number of the Reynolds' Layer?
- Photoionized Gas in the Galactic Halo
- Turbulent Heating of the Diffuse Ionized Gas
- Cosmic Rays in Interstellar Turbulence
- Turbulence in Line-Driven Stellar Winds
- An Introduction to Compressible MHD Turbulence
- Turbulence in Atomic Hydrogen
- Supershells in Spiral Galaxies
- The Size Distribution of Superbubbles in the Interstellar Medium
- Large-Scale Motions in the ISM of Elliptical and Spiral Galaxies
- Vortical Motions Driven by Supernova Explosions
- The Intermittent Dissipation of Turbulence: is it Observed in the Interstellar Medium?
- Chemistry in Turbulent Flows
- Supersonic Turbulence in Giant Extragalactic HII Regions
- Turbulence in HII regions: New results
- Hypersonic Turbulence of H2O Masers
- Water Masers Tracing Alfvenic Turbulence and Magnetic Fields in W51 M and W49 N
- Turbulence in the Ursa Major cirrus cloud
- The Collisions of HVCs with a Magnetized Gaseous Disk
- The Initial Stellar Mass Function as a Statistical Sample of Turbulent Cloud Structure
- The Structure of Molecular Clouds: are they Fractal?
- Diagnosing Properties of Turbulent Flows from Spectral Line Observations of the Molecular Interstellar Medium
- Centroid Velocity Increments as a Probe of the Turbulent Velocity Field in Interstellar Molecular Clouds
- High-Resolution C18O Mapping Observations of Heiles' Cloud 2 – Statistical Properties of the Line Width –
- Observations of Magnetic Fields in Dense Interstellar Clouds: Implications for MHD Turbulence and Cloud Evolution
- The Density PDFs of Supersonic Random Flows
- Turbulence as an Organizing Agent in the ISM
- Turbulence and Magnetic Reconnection in the Interstellar Medium
- The Evolution of Self-Gravitating, Magnetized, Turbulent Clouds: Numerical Experiments
- Super–Alfvénic Turbulent Fragmentation in Molecular Clouds
- Decay Timescales of MHD Turbulence in Molecular Clouds
- Numerical Magnetohydrodynamic Studies of Turbulence and Star Formation
- Direct Numerical Simulations of Compressible Magnetohydrodynamical Turbulence
- Fragmentation in Molecular Clouds: The Formation of a Stellar Cluster
- Accretion Disk Turbulence
- List of participants
Summary
Magnetic reconnection is often assumed to occur at an enhanced rate in the interstellar medium because of the effects of small scale turbulence. This effect is not modelled directly in numerical simulations, but is accounted for by explicitly assuming the resistivity is large, or assuming that numerical resistivity mimics the effect of small scale turbulence. The effective resistivity really is large only if the field can rapidly reconnect. In this paper I discuss two physical mechanisms for fast magnetic reconnection in the interstellar medium: enhanced diffusion at stagnation points, and formation of current sheets.
Introduction
Numerical experiments are making important contributions to the study of turbulence in the interstellar medium (ISM). Since any numerical simulation is restricted in the range of spatial and temporal scales which it can describe, it is important to develop a prescription for treating the effects of turbulence at the smallest scales, which are generally omitted from this range. Although very little energy resides at the smallest scales, the small scale motions dramatically increase momentum and magnetic flux transport in the ISM, and can also produce rapid thermal and chemical mixing. The most common way to account for these subgridscale effects is to simply assume that the viscosity, electrical resistivity, and other transport coefficients are much larger than their molecular values. The difficult problem of justifying this approach and calculating the so-called eddy diffusivities has received more attention in the atmospheric and stellar turbulence communities than it has, so far, among interstellar turbulence theorists.
- Type
- Chapter
- Information
- Interstellar Turbulence , pp. 232 - 239Publisher: Cambridge University PressPrint publication year: 1999
- 2
- Cited by