Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T11:53:15.275Z Has data issue: false hasContentIssue false

10 - Suspensions in viscoelastic media

Published online by Cambridge University Press:  05 December 2011

Jan Mewis
Affiliation:
Katholieke Universiteit Leuven, Belgium
Norman J. Wagner
Affiliation:
University of Delaware
Get access

Summary

Introduction

In the previous chapters it was assumed, explicitly or implicitly, that the suspending medium was Newtonian, which is typical for small molecule solvents. For a suspending medium containing a polymer, it was assumed that the only effects were on the interparticle forces. However, the consequences of having a viscoelastic medium were not considered. In many technological suspensions the suspending medium is viscoelastic. Examples can be found in coatings, inks, food products, detergents, cosmetics, pharmaceuticals, filled polymers, and composites, including nanocomposites. The source of viscoelasticity is most often the presence of polymers, either in solution or as a melt, which serve as binder or thickener. Detergents containing worm-like micelles are also viscoelastic, and suspensions in such fluids will display behavior similar to those for polymers. Some products contain vesicles, liquid crystals, or other mesophases that impart viscoelasticity.

The non-Newtonian nature of the suspending medium will affect the hydrodynamics. As has been shown (Chapter 2), for a shearing suspension in a Newtonian fluid the local flow around and between particles is much more complicated than the bulk, laminar shear flow. The constant viscosity of the suspending medium, however, ensures that there is universality in the flow behavior. This does not hold for suspensions in shear thinning fluids, making their analysis more involved. Nevertheless, this problem was tackled early on, as discussed in [1]. With viscoelastic media the situation becomes even more complex. Even during globally steady shearing flow the fluid elements near the particles are subjected to a transient motion (i.e., their motion is unsteady in a Lagrangian sense). Therefore, the time dependence of viscoelastic fluids will affect the local flow, destroying, for instance, the fore-aft symmetry of purely laminar flow around a sphere. In addition, the normal force differences in the fluid phase will affect the stress distribution on the particles, and hence their motion. Finally, seemingly anomalous behaviors occur for suspensions in viscoelastic media because the flow between particles is not simple shear flow, but includes extensional components.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Slattery, J. CBird, R. BNon-Newtonian flow past a sphereChem Eng Sci 16 3 1961CrossRefGoogle Scholar
Chhabra, R. PBubbles, Drops, and Particulates in Non-Newtonian FluidsBoca RatonCRC Press 2007Google Scholar
Stasiak, WCohen, CConcentration fluctuations of Brownian particles in a viscoelastic solventJ Chem Phys 98 1993 6510CrossRefGoogle Scholar
Gauthier, FGoldsmith, H. LMason, S. GParticle motions in non-Newtonian media: I. Couette flowRheol Acta 10 1971 344CrossRefGoogle Scholar
Karnis, AMason, S. GParticle motions in sheared suspensions: XIX. Viscoelastic mediaTrans Soc Rheol 10 1966 571CrossRefGoogle Scholar
Highgate, D. JWhorlow, R. WRheological properties of suspensions of spheres in non-Newtonian mediaRheol Acta 9 1970 569CrossRefGoogle Scholar
Kataoka, TKitano, TSasahara, MNishijima, KViscosity of particle filled polymer meltsRheol Acta 17 1978 149CrossRefGoogle Scholar
Mewis, Jde Bleyser, RConcentration effects in viscoelastic dispersionsRheol Acta 14 1975 721CrossRefGoogle Scholar
Mall-Gleissle, S. EGleissle, WMcKinley, G. HBuggisch, HThe normal stress behaviour of suspensions with viscoelastic matrix fluidsRheol Acta 41 2002 61CrossRefGoogle Scholar
Zarraga, I. EHill, D. ALeighton, D. TNormal stresses and free surface deformation in concentrated suspensions of noncolloidal spheres in a viscoelastic fluidJ Rheol 45 2001 1065CrossRefGoogle Scholar
Aral, B. KKalyon, D. MViscoelastic material functions of noncolloidal suspensions with spherical particlesJ Rheol 41 1997 599CrossRefGoogle Scholar
Greener, JEvans, J. R. GUniaxial elongational flow of particle-filled polymer meltsJ Rheol 42 1998 697CrossRefGoogle Scholar
Kobayashi, MTakahashi, TTakimoto, JKoyama, KInfluence of glass beads on the elongational viscosity of polyethylene with anomalous strain rate dependence of the strain-hardeningPolymer 37 16 1996 3745CrossRefGoogle Scholar
Mackay, M. EDao, T. TTuteja, ANanoscale effects leading to non-Einstein-like decrease in viscosityNat Mater 2 2003 762CrossRefGoogle ScholarPubMed
Fabris, DMuller, S. JLiepmann, DWake measurements for flow around a sphere in a viscoelastic fluidPhys Fluids 11 1999 3599CrossRefGoogle Scholar
Boger, D. VA highly elastic constant-viscosity fluidJ Non-Newtonian Fluid Mech 3 1977 87CrossRefGoogle Scholar
Solomon, M. JMuller, S. JFlow past a sphere in polystyrene-based Boger fluids: The effect on the drag coefficient of finite extensibility, solvent quality and polymer molecular weightJ Non-Newtonian Fluid Mech 62 1996 81CrossRefGoogle Scholar
Chilcott, M. DRallison, J. MCreeping flow of dilute polymer solutions past cylinders and spheresJ Non-Newtonian Fluid Mech 29 1988 381CrossRefGoogle Scholar
D’Avino, GMaffetone, P. LHulsen, M. APeters, G. W. MNumerical simulation of planar elongational flow of concentrated rigid particle suspensions in a viscoelastic fluidJ Non-Newtonian Fluid Mech 150 2008 65CrossRefGoogle Scholar
Snijkers, FD’Avino, GMaffetone, P. LGreco, FHulsen, M. AVermant, JRotation of a sphere in a viscoelastic liquid subjected to shear flow: II: Experimental resultsJ Rheol 53 2009 459CrossRefGoogle Scholar
D’Avino, GHulsen, M. ASnijkers, FVermant, JGreco, FMaffetone, P. LRotation of a sphere in a viscoelastic liquid subjected to shear flow: I: Simulation resultsJ Rheol 52 2008 1331CrossRefGoogle Scholar
Liu, Y. JNelson, JFeng, JJoseph, D. DAnomalous rolling of spheres down an inclined planeJ Non-Newtonian Fluid Mech 50 1993 305CrossRefGoogle Scholar
Singh, PJoseph, D. DSedimentation of a sphere near a vertical wall in an Oldroyd-B fluidJ Non-Newtonian Fluid Mech 94 2000 179CrossRefGoogle Scholar
Ho, B. PLeal, L. GMigration of rigid spheres in two-dimensional unidirectional flowsJ Fluid Mech 76 1976 783CrossRefGoogle Scholar
D’Avino, GMaffetone, P. LGreco, FHulsen, M. AViscoelasticity-induced migration of a rigid sphere in confined shear flowJ Non-Newtonian Fluid Mech 165 2010 466CrossRefGoogle Scholar
Lormand, B. MPhillips, R. JSphere migration in oscillatory Couette flow of a viscoelastic fluidJ Rheol 48 2004 551CrossRefGoogle Scholar
Tatum, J. AFinnis, M. VLawson, N. JHarrison, G. M3D particle image velocimetry of the flow field around a sphere sedimenting near a wallJ Non-Newtonian Fluid Mech 141 2007 99CrossRefGoogle Scholar
Jefri, MZahed, AElastic and viscous effects on particle migration in plane Poiseuille flowJ Rheol 33 1989 691CrossRefGoogle Scholar
Tehrani, M. AAn experimental study of particle migration in pipe flow of viscoelastic fluidsJ Rheol 40 1996 1057CrossRefGoogle Scholar
Binous, HPhillips, R. JThe effect of sphere-wall interactions on particle motion in a viscoelastic suspensions of FENE dumbbellsJ Non-Newtonian Fluid Mech 85 1999 63CrossRefGoogle Scholar
Huang, P. YJoseph, D. DEffects of shear thinning on migration of neutrally buoyant particles in pressure driven flow of Newtonian and viscoelastic fluidsJ Non-Newtonian Fluid Mech 90 2000 159CrossRefGoogle Scholar
Ardekani, A. MRangel, R. HJoseph, D. DTwo spheres in a free stream of a second-order fluidPhys Fluids 20 2008CrossRefGoogle Scholar
Joseph, D. DLiu, YPoletto, MFeng, JAggregation and dispersion of spheres falling in viscoelastic liquidsJ Non-Newtonian Fluid Mech 54 1994 45CrossRefGoogle Scholar
Riddle, M. JNarvaez, CBird, R. BInteractions between two spheres falling along their line of centers in a viscoelastic fluidJ Fluid Mech 2 1977 23Google Scholar
Michele, JPätzold, RDonis, RAlignment and aggregation effects in suspensions of spheres in non-Newtonian mediaRheol Acta 16 1977 317CrossRefGoogle Scholar
Giesekus, HDie Bewegung von Teilchen in Strömungen nicht-Newtonscher FlüssigkeitenZ Angew Math Mech 58 1978 T26Google Scholar
Lyon, M. KMead, D. WElliott, R. ELeal, L. GStructure formation in moderately concentrated viscoelastic suspensions in simple shear flowJ Rheol 45 2001 881CrossRefGoogle Scholar
Scirocco, RVermant, JMewis, JEffect of the viscoelasticity of the suspending fluid on structure formation in suspensionsJ Non-Newtonian Fluid Mech 117 2004 183CrossRefGoogle Scholar
Won, DKim, CAlignment and aggregation of spherical particles in viscoelastic fluid under shear flowJ Non-Newtonian Fluid Mech 117 2004 141CrossRefGoogle Scholar
Highgate, D. JParticle migration in cone-plate viscometry of suspensionsNature 211 1966 1390CrossRefGoogle Scholar
Highgate, D. JWhorlow, R. WEnd effects and particle migration effects in concentric cylinder rheometryRheol Acta 8 1969 142CrossRefGoogle Scholar
Ponche, ADupuis, DOn instabilities and migration phenomena in cone and plate geometryJ Non-Newtonian Fluid Mech 127 2005 123CrossRefGoogle Scholar
Highgate, D. JWhorlow, R. WMigration of particles in a polymer solution during cone and plate viscometryWetton, R. EWhorlow, R. WPolymer Systems: Deformation and FlowNew YorkMacMillan 1968 251Google Scholar
Wang, JJoseph, D. DPotential flow of a second-order fluid over a sphere or an ellipseJ Fluid Mech 511 2004 201CrossRefGoogle Scholar
Gunes, D. ZScirocco, RMewis, JVermant, JFlow-induced orientation of non-spherical particles: Effect of aspect ratio and medium rheologyJ Non-Newtonian Fluid Mech 155 2008 39CrossRefGoogle Scholar
Leal, L. GThe slow motion of slender rod-like particles in a second-order fluidJ Fluid Mech 69 1975 305CrossRefGoogle Scholar
Harlen, O. GKoch, D. LSimple shear-flow of a suspension of fibers in dilute polymer solution at high Deborah numberJ Fluid Mech 252 1993 187CrossRefGoogle Scholar
Iso, YKoch, D. LChen, COrientation in simple shear flow of semi-dilute fiber suspensions: 1. Weakly elastic fluidsJ Non-Newtonian Fluid Mech 62 2 1996Google Scholar
Greco, FD’Avino, GMaffettone, P. LRheology of a dilute suspension of rigid spheres in a second order fluidJ Non-Newtonian Fluid Mech 147 2007 1CrossRefGoogle Scholar
Koch, D. LSubramanian, GThe stress in a dilute suspension of spheres suspended in a second-order fluid subject to a linear velocity fieldJ Non-Newtonian Fluid Mech 138 2006 87CrossRefGoogle Scholar
Patankar, N. AHu, H. HRheology of a suspension of particles in viscoelastic fluidsJ Non-Newtonian Fluid Mech 96 2001 427CrossRefGoogle Scholar
Le Meins, J.-FMoldenaers, PMewis, JSuspensions of monodisperse spheres in polymer melts: Particle size effects in extensional flowRheol Acta 42 2003 184CrossRefGoogle Scholar
Barnes, HA review of the rheology of filled viscoelastic systemsBinding, D. MWalters, KRheology Reviews 2003GlasgowBritish Society of Rheology 2003 1Google Scholar
Metzner, A. BRheology of suspensions in polymeric liquidsJ Rheol 29 1985 739CrossRefGoogle Scholar
Kamal, M. RMutel, ARheological properties of suspensions in Newtonian and non-Newtonian fluidsJ Polym Eng 5 1985 293CrossRefGoogle Scholar
Malkin, A. YRheology of filled polymersAdv Polym Sci 96 1990 69CrossRefGoogle Scholar
Hornsby, P. RRheology, compounding and processing of filled thermoplasticsAdv Polym Sci 139 1999 55Google Scholar
Tanaka, HWhite, J. LExperimental investigations of shear and elongational flow properties of polystyrene melts reinforced with calcium carbonate, titanium dioxide, and carbon blackPolym Eng Sci 20 1980 949CrossRefGoogle Scholar
Gleissle, WBaloch, M. KReduced flow functions of suspensions based on Newtonian and non-Newtonian liquidsMena, BGarcía-Rejón, ARangel-Nafaile, CAdvances in Rheology: Proceedings of the 9th International Congress on Rheology, Acapulco, 1984Mexico CityUniversidad Nacional Autónoma de México 1984 549Google Scholar
Ohl, NGleissle, WThe characterization of the steady-state shear and normal stress functions of highly concentrated suspensions formulated with viscoelastic liquidsJ Rheol 37 1993 381CrossRefGoogle Scholar
Moldenaers, PVermant, JHeinrich, EMewis, JEffect of fillers on the steady state rheological properties of liquid crystalline polymersRheol Acta 37 1998 463CrossRefGoogle Scholar
Poslinski, A. JRyan, M. EGupta, R. KSeshadri, S. GFrechette, F. JRheological behavior of filled polymeric systems: I. Yield stress and shear-thinnng effectsJ Rheol 32 1988 703CrossRefGoogle Scholar
Scirocco, RVermant, JMewis, JShear thickening in filled Boger fluidsJ Rheol 49 2005 551CrossRefGoogle Scholar
Czarnecki, LWhite, J. LShear-flow rheological properties, fiber damage, and mastication characteristics of ramid-fiber-reinforced, glass-fiber-reinforced and cellulose-reinforced polystyrene meltsJ Appl Polym Sci 25 1980 1217CrossRefGoogle Scholar
Krishnamoorti, RRen, JSilva, A. SShear response of layered silicate nanocompositesJ Chem Phys 114 2001 4968CrossRefGoogle Scholar
See, HJiang, PPhan-Thien, NConcentration dependence of the linear viscoelastic properties of particle suspensionsRheol Acta 39 2000 131CrossRefGoogle Scholar
Schaink, H. MSlot, J. J. MJongschaap, R. J. JMellema, JThe rheology of systems containing rigid spheres suspended in both viscous and viscoelastic media, studied by Stokesian dynamics simulationsJ Rheol 44 2000 473CrossRefGoogle Scholar
Le Meins, J.-FMoldenaers, PMewis, JSuspensions in polymer melts: 1. Effect of particle size on the shear flow behaviorInd Eng Chem Res 41 2002 6297CrossRefGoogle Scholar
Walberer, J. AMcHugh, A. JThe linear viscoelastic behavior of highly filled polydimethylsiloxane measured in shear and compressionJ Rheol 45 2001 187CrossRefGoogle Scholar
Mobuchon, CCarreau, P. JHeuzey, M.-CEffect of flow history on the structure of a non-polar polymer/clay nanocomposite model systemRheol Acta 46 2007 1045CrossRefGoogle Scholar
Montes, SWhite, J. LNakajima, NRheological behavior of rubber carbon-black compounds in various shear flow historiesJ Non-Newtonian Fluid Mech 28 1988 183CrossRefGoogle Scholar
Ishizuka, OKoyama, KElongational viscosity at a constant elongational strain rate of polypropylene meltPolymer 21 1980 164CrossRefGoogle Scholar
Schmidt, MScher- und Dehnrheologische Untersuchungen an Suspensionen auf der Basis Sphärischer FüllstoffeUniversität Erlangen-Nürnberg 2000Google Scholar
Ahamadi, MHarlen, O. GNumerical study of the rheology of rigid fillers suspended in long-chain branched polymer under planar extensional flowJ Non-Newtonian Fluid Mech 165 2010 281CrossRefGoogle Scholar
D’Avino, GMaffettone, P. LHulsen, M. APeters, G. W. MA numerical method for simulating concentrated rigid particle suspensions in an elongational flow using a fixed gridJ Comput Phys 226 2007 688CrossRefGoogle Scholar
Petrie, J. CThe rheology of fibre suspensionsJ Non-Newtonian Fluid Mech 87 1999 369CrossRefGoogle Scholar
Eberle, A. P. RBaird, D. GWapperon, PRheology of non-Newtonian fluids containing glass fibers: A review of experimental literatureInd Eng Chem Res 47 2008 3470CrossRefGoogle Scholar
Kitano, TKataoka, TShirota, TAn empirical equation of the relative viscosity of polymer melts filled with various inorganic fillersRheol Acta 20 1981 207CrossRefGoogle Scholar
Chan, YWhite, J. LOyanagi, YFundamental study of the rheological properties of glass-fiber-reinforced polyethylene and polystyrene meltsJ Rheol 22 1978 507CrossRefGoogle Scholar
Ceccia, SFerri, DTabuani, DMaffetone, P. LRheology of carbon nanofiber-reinforced polypropyleneRheol Acta 47 2008 425CrossRefGoogle Scholar
Kim, J. KSong, J. HRheological properties and fiber orientation of short fiber-reinforced plasticsJ Rheol 41 1997 1061CrossRefGoogle Scholar
Mobuchon, CCarreau, P. JHeuzey, M.-CSepehr, MShear and extensional properties of short glass fiber reinforced polypropylenePolym Compos 26 2005 247CrossRefGoogle Scholar
Takahashi, TTakimoto, JKoyama, KUniaxial elongational viscosity of various molten polymer compositesPolym Compos 20 1999 357CrossRefGoogle Scholar
Hooper, J. BSchweizer, K. SDesai, T. GKoshy, RKeblinski, PStructure, surface excess and effective interactions in polymer nanocomposite melts and concentrated solutionsJ Chem Phys 121 2004 6986CrossRefGoogle ScholarPubMed
Hooper, J. BSchweizer, K. SContact aggregation, bridging, and steric stabilization in dense polymer-particle mixturesMacromolecules 38 2005 8858CrossRefGoogle Scholar
Picu, R. CRakshit, ADynamics of free chains in polymer nanocompositesJ Chem Phys 126 2007CrossRefGoogle ScholarPubMed
Zeng, Q. HYu, A. BLu, G. QMultiscale modeling and simulation of polymer nanocompositesProg Polym Sci 33 2008 191CrossRefGoogle Scholar
Kumar, S. KKrishnamoorti, RNanocomposites: Structure, phase behavior, and propertiesAnnu Rev Chem Biomol Eng 1 2010 37CrossRefGoogle ScholarPubMed
Hall, L. MSchweizer, K. SStructure, scattering patterns and phase behavior of polymer nanocomposites with nonspherical fillersSoft Matter 6 2010 1015CrossRefGoogle Scholar
Ganesan, VEllison, CPryamitsin, VMean-field models of structure and dispersion of polymer-nanoparticle mixturesSoft Matter 6 2010 4010CrossRefGoogle Scholar
Frischknecht, A. LMcGarrity, E. SMackay, M. EExpanded chain dimension in polymer melts with nanoparticle fillersJ Chem Phys 132 2010CrossRefGoogle Scholar
Maas, J. HFleer, G. JLeermakers, F. A. MCohen Stuart, M. AWetting of polymer brush by a chemically identical polymer melt: Phase diagram and film stabilityLangmuir 18 2002 8871CrossRefGoogle Scholar
MacDowell, L. GMüller, MObservation of autophobic dewetting on polymer brushes from computer simulationJ Phys: Condens Matter 17 2005 S3523Google Scholar
Hasegawa, RAoki, YDoi, MOptimum grafting density for dispersing particles in polymer meltsMacromolecules 29 1996 6656CrossRefGoogle Scholar
Green, D. LMewis, JConnecting the wetting and rheological behaviors of poly(dimethylsiloxane)-grafted silica spheres in poly(dimethylsiloxane) meltsLangmuir 22 2006 9546CrossRefGoogle ScholarPubMed
McEwan, MGreen, DRheological impacts of particle softness on wetted polymer-grafted silica nanoparticles in polymer meltsSoft Matter 5 2009 1705CrossRefGoogle Scholar
Xu, J. JQiu, FZhang, H. DYang, Y. LMorphology and interactions of polymer brush-coated spheres in a polymer matrixJ Polym Sci, Part B: Polym Phys 44 2006 2811CrossRefGoogle Scholar
Trombly, D. MGanesan, VCurvature effects upon interactions of polymer-grafted nanoparticles in chemically identical polymer matricesJ Chem Phys 133 2010CrossRefGoogle ScholarPubMed
Moniruzzaman, MWiney, K. IPolymer nanocomposites containing carbon nanotubesMacromolecules 39 2006 5194CrossRefGoogle Scholar
Stankovich, SDikin, D. ADommett, G. H. BGraphene-based composite materialsNature 442 2006 282CrossRefGoogle ScholarPubMed
Alexandre, MDubois, PPolymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materialsMater Sci Eng R 28 2000 1CrossRefGoogle Scholar
Solomon, M. JAlmusallem, A. SSeefeldt, K. FSomwangthanaroj, AVaradan, PRheology of polypropylene/clay hybrid materialsMacromolecules 34 2001 1864CrossRefGoogle Scholar
Vermant, JCeccia, SDolgovskij, M. KMaffetone, P. LMacosko, C. WQuantifying dispersion of layered nanocomposites via melt rheologyJ Rheol 51 2007 429CrossRefGoogle Scholar
Ramanathan, TAbdala, A. AStankovich, SFunctionalized graphene sheets for polymer nanocompositesNat Nanotechnol 3 2008 327CrossRefGoogle ScholarPubMed
Hall, L. MJayaraman, ASchweizer, K. SMolecular theories of polymer nanocompositesCurr Opin Colloid Interface Sci 14 2010 38Google Scholar
Frischknecht, A. LForces between nanorods with end-adsorbed chains in a homopolymer meltJ Chem Phys 128 2008CrossRefGoogle Scholar
Ginzburg, V. VBalasz, A. CCalculating phase diagrams for nanocomposites: The effect of adding end-functionalized chains to polymer/clay mixturesAdv Mater 23 2000 18053.0.CO;2-Z>CrossRefGoogle Scholar
Sung, J. HMewis, JMoldenaers, PTransient rheological probing of PIB/hectorite nanocompositesKorea-Aust Rheol J 20 2008 27Google Scholar
Kota, A. KCipriano, B. HDuesterberg, M. KGershon, A. LPowell, DRaghavan, S. RElectrical and rheological percolation in polystyrene/MWCNT nanocompositesMacromolecules 40 2007 7400CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×