Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-ncgjf Total loading time: 3.189 Render date: 2022-01-16T10:17:36.227Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

7 - The distribution and conservation of birds of coastal salt marshes

Published online by Cambridge University Press:  05 June 2014

Russell Greenberg
Affiliation:
Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
Augusto Cardoni
Affiliation:
Naturales Universidad Nacional de Mar del Plata
Bruno J. Ens
Affiliation:
SOVON Dutch Centre for Field Ornithology, SOVON-Texel, Den Burg, Texel, The Netherlands
Xiaojing Gan
Affiliation:
Massey University
Juan Pablo Isacch
Affiliation:
Naturales Universidad Nacional de Mar del Plata
Kees Koffijberg
Affiliation:
SOVON Dutch Centre for Field Ornithology, Nijmegen, The Netherlands
Richard Loyn
Affiliation:
Arthur Rylah Institute for Environmental Research, Heidelberg, VIC, Australia
Brooke Maslo
Affiliation:
Rutgers University, New Jersey
Julie L. Lockwood
Affiliation:
Rutgers University, New Jersey
Get access

Summary

Introduction

Salt and brackish coastal marshes (coastal salt marsh) are distributed thinly along the mid- to high-latitude coastlines of all the major continents except Antarctica. Where coastlines are protected and supplied with a source of sediment, grasses and shrubs colonize and stabilize the substrate, paving the way for further marsh accretion. Salt marshes form along lagoons protected by barrier islands, at the mouths of river deltas and along the edges of protected estuaries. Salt marshes are widely distributed, but account for a small amount of land cover. Although precise quantification of the current extent of salt marsh is lacking, an estimate of 60 000 km2 seems reasonable (Greenberg et al., 2006b). Salt marsh vegetation is replaced by mangrove forest between 32°N and 40°S or coexists with it at higher tidal levels (see Chapter 2). Whatever the exact amount of extant salt marsh, it is clear that it is a fraction of what existed even a century ago. The direct and indirect effects of human activity are particularly acute for salt marshes, as most of the human population lives on or near the coasts or within the watershed that feeds the estuaries where marsh grows (Rickey & Anderson, 2004).

Salt marshes show a great deal of similarity throughout the world in their simple vegetative structure punctuated by tidal sloughs and their low floristic diversity. In general, they are dominated by one to a few species of salt-tolerant grasses and shrubs (mostly of the Chenopodiaceae), often showing distinct zonation associated with the frequency of tidal inundation and salinity (Figure 7.1). However, marshes along the different continental shorelines are unique, showing differences in the dominant plant taxa, source of the colonizing fauna, specifics of the tidal regime, frequency of storm disturbance, and the tremendous variation in human activity and use. While similar to the eye, even within a region subtle differences in marsh structure give rise to distinct biotic assemblages (Figure 7.2).

Type
Chapter
Information
Coastal Conservation , pp. 180 - 242
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P. (2009). Australian saltmarshes in global context. In Saintilan, N. (ed.), Australian Saltmarsh Ecology. Collingwood: CSIRO Publishing, pp. 1–21.Google Scholar
An, S. Q. (2003). Ecological Engineering of Wetlands. Beijing: Chemical Industry Press.Google Scholar
An, S. Q., Gu, B. H., Zhou, C. F., et al. (2007). Spartina invasion in China: Implications for invasive species management and future research. Weed Research, 47, 183–191.CrossRefGoogle Scholar
Bayard, T. S. & Elphick, C. S. (2011). Planning for sea-level rise: Quantifying patterns of saltmarsh sparrow (Ammodramus caudacutus) nest flooding under current sea-level conditions. Auk, 128, 393–403.CrossRefGoogle Scholar
Beadell, J., Greenberg, R., Droege, S. & Royle, J. A. (2003). Distribution, abundance, and habitat affinities of the coastal plain swamp sparrow. Wilson Bulletin, 115, 38–44.CrossRefGoogle Scholar
Benoit, L. K. & Askins, R. A. (1999). Impact of the spread of Phragmites on the distribution of birds in Connecticut tidal marshes. Wetlands, 19, 194–208.CrossRefGoogle Scholar
Bertness, M. D., Ewanchuk, P. J. & Silliman, B. R. (2002). Anthropogenic modification of New England salt marsh landscapes. Proceedings of the National Academy of Sciences of the United States of America, 99, 1395–1398.CrossRefGoogle ScholarPubMed
Bilenca, D. & Miñarro, F. (2004). Identificación de Areas Valiosas de Pastizales en Las Pampas y Campos Argentinos, Uruguay y Sur de Brasil (AVPs). Buenos Aires: Fundación Vida Silvestre.Google Scholar
BirdLife International. (2004). Birds in Europe 2. Cambridge: BirdLife International.Google Scholar
Boon, P. I. (2011). Saltmarshes. In: Understanding the Western Port Environment: A Summary of Current Knowledge and Priorities for Future Research. Docklands, Victoria: Melbourne Water, pp. 116–133.Google Scholar
Boulord, A., Wang, T.-H., Wang, X.-M. & Song, G.-X. (2011). Impact of reed harvesting and smooth cordgrass Spartina alterniflora invasion on nesting reed parrotbill Paradoxornis heudei. Bird Conservation International, 21, 25–35.CrossRefGoogle Scholar
Canepuccia, A. D., Farias, A., Escalante, A. H., et al. (2008). Differential responses of marsh predators to rainfall-induced habitat loss and subsequent variations in prey availability. Canadian Journal of Zoology, 86, 407–418.CrossRefGoogle Scholar
Cao, L., Barter, M. A. & Wang, X. (2008). Saunders’s gull: A new population estimate. Bird Conservation International, 18, 301–306.CrossRefGoogle Scholar
Cao, M. C., Liu, G. H., Shan, K., et al. (2010). A multi-scale assessment of habitat suitability of red-crowned crane at the Yellow River Delta Nature Reserve, Shandong, China. Biodiversity Science, 18, 283–291.Google Scholar
Cao, W. Z. & Wong, M. H. (2007). Current status of coastal zone issues and management in China: A review. Environment International, 33, 985–992.CrossRefGoogle ScholarPubMed
Cardoni, D. A. (2011). Adaptaciones evolutivas y respuestas a la actividad antrópica de aves de marismas del atlántico sudoccidental: un análisis a diferentes escalas temporales. PhD thesis, Universidad Nacional de Mar del Plata, Argentina.
Cardoni, D. A., Isacch, J. P. & Iribarne, O. O. (2007). Indirect effects of the burrowing crab (Chasmagnathus granulatus) in the habitat use of salt marsh birds. Estuaries and Coasts, 30, 382–389.CrossRefGoogle Scholar
Cardoni, D. A., Isacch, J. P., Fanjul, M. E., Escapa, M. & Iribarne, O. O. (2011). Relationship between anthropogenic sewage discharge, marsh structure and bird assemblages in a SW Atlantic salt marsh. Marine Environmental Research, 71, 122–130.CrossRefGoogle Scholar
Cardoni, D. A., Isacch, J. P. & Iribarne, O. O. (2012). Effects of cattle grazing and fire on the abundance, habitat selection, and nesting success of the bay-capped wren-spinetail (Spartonoica maluroides) in coastal saltmarshes of the Pampas region. Condor, 114, 803–811.CrossRefGoogle Scholar
Cardoni, D. A., Greenberg, R., Maldonado, J. E. & Isacch, J. P. (2013). Morphological adaptation to coastal marshes in spite of limited genetic structure in the Neotropical passerine Spartonoica maluroides (Aves: Furnariidae). Biological Journal of Linnaean Society, 109, 78–91.CrossRefGoogle Scholar
Cervencl, A., Esser, W., Maier, M., et al. (2011). Can differences in incubation patterns of common redshanks Tringa totanus be explained by variations in predation risk?Journal of Ornithology, 152, 1033–1043.CrossRefGoogle Scholar
Chapman, V. J. (ed.). (1977). Wet coastal ecosystems. In Ecosystems of the World, vol. 1. Amsterdam: Elsevier Scientific.
Charman, K. & Macey, A. (1978). The winter grazing of saltmarsh vegetation by dark-bellied Brent geese. Wildfowl, 29, 153–162.Google Scholar
Chavez-Ramirez, F. & Slack, R. D. (1995). Differential use of coastal marsh habitats by nonbreeding wading birds. Colonial Waterbirds, 18, 166–171.CrossRefGoogle Scholar
Chen, M. R., Han, X. F. & Liu, S. Q. (2000). The effects of reclamation and sustainable development on coastal zone in Shanghai. China Soft Science, 12, 115–120.Google Scholar
Christidis, L. & Boles, W. E. (2008). Systematics and Taxonomy of Australian Birds. Collingwood: CSIRO Publishing.Google Scholar
Chu, Z. Y., Yang, S. Z., Qiao, Z. Z. & Ye, E. Q. (1999). Conservation of the Saunder’s gull breeding colony at the Luanhe Estuary. Chinese Biodiversity, 7, 20–23.Google Scholar
Costa, C. S. B., Iribarne, O. O. & Farina, J. M. (2009). Human impacts and threats to the conservation of South American salt marshes. In Silliman, B. R., Grosholz, E. D. & Bertness, M. D. (eds.), Human Impacts on Salt Marshes: A Global Perspective. Los Angeles, CA: University of California Press, pp. 337–359.Google Scholar
Cresswell, W. & Whitfield, D. P. (1994). The effects of raptor predation on wintering wader populations at the Tyningharne estuary, southeast Scotland. Ibis, 136, 223–232.CrossRefGoogle Scholar
Daehler, C. C. & Strong, D. R. (1996). Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biological Conservation, 78, 51–58.CrossRefGoogle Scholar
Daiber, F. C. (1986). Conservation of Tidal Marsh. New York, NY: Van Nostrand Reinhold Co.Google Scholar
Dale, P. (1993). Australian wetlands and mosquito control – Contain the pest and sustain the environment. Wetlands Australia, 12, 1–12.Google Scholar
Danner, R. M. (2012). The effects of limited winter food availability on the population dynamics, energy reserves, and feather molt of the swamp sparrow. PhD thesis, Virginia Polytechnic and State University, Blacksburg, VA.
Dierschke, J. (2002). Vorkommen und Habitatwahl des Strandpiepers Anthus petrosus im deutschen Wattenmeer. [Occurrence and habitat use of rock pipit Anthus petrosus in the German Wadden Sea.]Vogelwelt, 123, 125–134.Google Scholar
Dijkema, K. S. (1987). Geography of salt marshes in Europe. Zeitschrift fur Geomorphologie, 31, 489–499.Google Scholar
Dijkema, K. S. (1990). Salt and brackish marshes around the Baltic Sea and adjacent parts of the North Sea: Their vegetation and management. Biological Conservation, 51, 191–209.CrossRefGoogle Scholar
Dijkema, K. S., Beeftink, W. G., Doody, J. P., et al. (1984). Salt marshes in Europe. Nature and Environment Series, 30, 1–178.Google Scholar
Duan, Y. B., Tian, X. H., Zhu, S. Y., et al. (2011). Make use of nest-site of oriental white stork in the Yellow River Estuary Nature Reserve. Acta Ecologica Sinica, 31, 666–672.Google Scholar
Duarte, B., Caetano, M. & Almeida, P. R. (2010). Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal). Environmental Pollution, 75, 1661–1668.CrossRefGoogle Scholar
Etterson, M. A., Olsen, B. J., Greenberg, R. & Shriver, W. G. (2011). Sources, sinks, and model accuracy. In Liu, J., Hull, V., Morzillo, A. & Wiens, J. (eds.), Sources, Sinks, and Sustainability Across Landscapes. New York, NY: Cambridge University Press, pp. 273–290.CrossRefGoogle Scholar
Ferns, P. N. (1992). Bird Life of Coasts and Estuaries. Cambridge: Cambridge University Press.Google Scholar
Gan, X. J., Zhang, K. J., Tang, S. M., Li, B. & Ma, Z. J. (2006). Three new records of birds in Shanghai: Locustella pleskei (Pleske’s warbler), Megalurus pryeri (Japanese swamp warbler) and Acrocephalus concinens (blunt-winged paddyfield warbler). Journal of Fudan University (Natural Science), 45, 417–420.Google Scholar
Gan, X. J., Cai, Y. T., Choi, C. Y., et al. (2009). Potential impacts of invasive Spartina alterniflora on spring bird communities at Chongming Dongtan, a Chinese wetland of international importance. Estuarine Coastal and Shelf Science, 83, 211–218.CrossRefGoogle Scholar
Gan, X. J., Choi, C. Y., Wang, Y., et al. (2010). Alteration of habitat structure and food resources by invasive smooth cordgrass affects habitat use by wintering saltmarsh birds at Chongming Dongtan, East China. Auk, 12, 317–327.CrossRefGoogle Scholar
Garnett, S. T. (1987). Aerial surveys of waders (Aves: Charadriiformes) along the coast of north-eastern Australia. Australian Wildlife Research, 14, 521–528.CrossRefGoogle Scholar
Ge, Z. M. (2007). The Research on the Characters of Migratory Waterbird Communities and the Habitats Restoration Strategy at the Yangtze River Mouth. Shanghai: East China Normal University.Google Scholar
Glenn, E. P., Lee, C., Felger, R. & Zengel, S. (1996). Effects of water management on the wetlands of the Colorado River Delta, Mexico. Conservation Biology, 10, 1175–1186.CrossRefGoogle Scholar
Greenberg, R., Elphick, C., Nordby, J. C., et al. (2006a). Flooding and predation: Trade-offs in the nesting ecology of tidal-marsh sparrows. Studies in Avian Biology, 32, 96–109.Google Scholar
Greenberg, R., Maldonado, J., Droege, S. & McDonald, M. V. (2006b). Tidal marshes: A global perspective on the evolution and conservation of their terrestrial vertebrates. Bioscience, 56, 675–685.CrossRefGoogle Scholar
Greenberg, R., Danner, R. M., Olsen, B. J. & Luther, D. (2012). High temperatures explain bill size in salt marsh sparrows. Ecography, 35, 146–152.CrossRefGoogle Scholar
Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist, 111, 1169–1195.CrossRefGoogle Scholar
Hazelden, J. & Boorman, L. A. (2001). Soils and ‘managed retreat’ in South East England. Soil Use and Management, 17, 150–154.CrossRefGoogle Scholar
Heng, N. N., Niu, J. Y., Zhang, B. & Wang, T. H. (2011). Habitat selection of shorebirds in the intertidal mudflat of Nanhui coasts. Journal of Fudan University (Natural Science), 50, 276–310.Google Scholar
Higgins, P. J. (ed.). (1999). Handbook of Australian, New Zealand and Antarctic Birds, vol. 4: Parrots to Dollarbird. Melbourne: Oxford University Press.
Higgins, P. J. & Davies, S. J. J. F. (eds.). (1996). Handbook of Australian, New Zealand and Antarctic Birds, vol. 3: Snipe to Pigeons. Melbourne: Oxford University Press.
Higgins, P. J. & Peter, J. M. (eds.). (2002). Handbook of Australian, New Zealand and Antarctic Birds, vol. 6: Pardalotes to Shrike-thrushes. Melbourne: Oxford University Press.
Higgins, P. J., Peter, J. M. & Steele, W. K. (eds.). (2001). Handbook of Australian, New Zealand and Antarctic Birds, vol. 5: Tyrant-flycatchers to Chats. Melbourne: Oxford University Press.
Higgins, P. J., Peter, J. M. & Cowling, S. J. (eds.). (2006). Handbook of Australian, New Zealand and Antarctic Birds., vol. 7: Boatbill to Starlings. Melbourne: Oxford University Press.
Horwitz, E. L. (1978). Our Nations Wetlands. Washington, DC: Council on Environmental Quality.Google Scholar
Hu, W. & Lu, J. J. (2000). The research on shorebirds’ community structure of spring in San Jia Gang. Journal of East China Normal University (Natural Science), 4, 106–109.Google Scholar
Huang, Z. Y., Sun, Z. H., Yu, K., et al. (1993). Bird Resources and Habitats in Shanghai. Shanghai: Fudan University Press.Google Scholar
Hughes, R. G. (2004). Climate change and loss of saltmarshes: Consequences for birds. Ibis, 146, 21–28.CrossRefGoogle Scholar
Isacch, J. P. & Cardoni, D. A. (2011). Different grazing strategies are necessary to conserve endangered grassland birds in short and tall salty grasslands of the flooding Pampas. Condor, 113, 724–734.CrossRefGoogle Scholar
Isacch, J. P., Holz, S., Ricci, L. & Martínez, M. M. (2004). Post-fire vegetation change and bird use of a salt marsh in coastal Argentina. Wetlands, 24, 235–243.CrossRefGoogle Scholar
Isacch, J. P., Costal, C. S. B., Rodríguez-Gallego, L., et al. (2006). Distribution of salt marsh plant communities associated with environmental factors along a latitudinal gradient on the SW Atlantic coast. Journal of Biogeography, 33, 888–900.CrossRefGoogle Scholar
Isacch, J. P., Cardoni, D. A. & Iribarne, O. (2013). Diversity and habitat distribution of birds in coastal marshes and comparisons with surrounded upland habitats in southeastern South America. Estuaries and Coasts, .Google Scholar
IUCN. (2011). IUCN Red List of Threatened Species, Version 2011.2. . Accessed 15 September 2012.
Jefferies, R. L., Jano, A. P. & Abraham, K. F. (2006). A biotic agent promotes large-scale catastrophic change in the coastal marshes of Hudson Bay. Journal of Ecology, 94, 234–242.CrossRefGoogle Scholar
Ji, Y. H. & Zhou, G. S. (2010). Transformation of vegetation structure in China’s Liaohe Delta during 1988–2006. Chinese Journal of Plant Ecology, 34, 359–367.Google Scholar
Jiang, H. X., Chu, G. Z. & Hou, Y. Q. (2002). Breeding habitat selection of Saunders’ gull Larus saundersi in Yancheng of Jiangsu Province. Acta Ecologica Sinica, 22, 999–1004.Google Scholar
Jiang, H. X., Hou, Y. Q., Chu, G. Z., et al. (2010). Breeding population dynamics and habitat transition of Saunders’s gull Larus saundersi in Yancheng National Nature Reserve, China. Bird Conservation International, 20, 13–24.CrossRefGoogle Scholar
Jing, K. (2005). Stopover ecology of shorebirds in Chongming Dongtan, Shanghai. PhD thesis, Fudan University, Shanghai.
JMMB. (2010). Trends of migratory and wintering waterbirds in the Wadden Sea 1987/88–2008/09. Wilhelmshaven, Germany. .
JMBB. (2011). Trends in breeding birds in the Wadden Sea 1991–2006. Wilhelmshaven, Germany. .
Kingston, P. F. (2002). Long-term environmental impacts of oil spills. Spill Science and Technology Bulletin, 7, 53–61.CrossRefGoogle Scholar
Koffijberg, K., Blew, J., Eskildsen, K., et al. (2003). High Tide Roosts in the Wadden Sea, Wadden Sea Ecosystem No. 16. Wilhelmshaven, Germany: Common Wadden Sea Secretariat, Joint Monitoring Group of Migratory Birds in the Wadden Sea.Google Scholar
Koffijberg, K., Dijksen, L., Hälterlein, B., et al. (2006). Breeding Birds in the Wadden Sea in 2001. Results from the Total Survey in 2001 and Trends in Numbers Between 1991–2001. Wadden Sea Ecosystem No. 22. Wilhelmshaven, Germany: Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group, Joint Monitoring Group of Breeding Birds in the Wadden Sea.Google Scholar
Kriwoken, L. K. & Hedge, P. (2000). Exotic species and estuaries: Managing Spartina anglica in Tasmania, Australia. Ocean and Coastal Management, 43, 573–584.CrossRefGoogle Scholar
Laegdsgaard, P., Kelleway, J., Williams, R. J. & Harty, C. (2009). Protection and management of coastal saltmarsh. In Saintilan, N. (ed.), Australian Saltmarsh Ecology. Collingwood: CSIRO Publishing, pp. 179–210.Google Scholar
Langley, J. A. & Megonigal, J. P. (2010). Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature, 466, 96–99.CrossRefGoogle Scholar
Laursen, K., Blew, J., Eskildsen, K., et al. (2010). Migratory Waterbirds in the Wadden Sea 1987–2008. Wadden Sea Ecosystem No. 30. Wilhelmshaven, Germany: Common Wadden Sea Secretariat, Joint Monitoring Group of Migratory Birds in the Wadden Sea.Google Scholar
Leck, M. A. (1989). Wetland seed banks. In Leck, M. A., Parker, V. T. & Simpson, R. L. (eds.), Ecology of Soil Seed Banks. San Diego, CA: Academic Press, pp. 283–306.CrossRefGoogle Scholar
Li, G. D., Zhou, Y. X., Tian, B., Liu, Z. G. & Zheng, Z. S. (2008). Shanghai estuarine and coastal wetlands change analysis based on remote sensing and GIS. Journal of Jilin University (Earth Science Edition), 38, 219–323.Google Scholar
Loyn, R. H. (1978). A survey of birds in Westernport Bay, Victoria, 1973–74. Emu, 78, 11–19.CrossRefGoogle Scholar
Loyn, R. H., Lane, B. A., Chandler, C. & Carr, G. W. (1986). Ecology of orange-bellied parrots Neophema chrysogaster at their main remnant wintering site. Emu, 86, 195–206.CrossRefGoogle Scholar
Loyn, R. H., Dann, P. & McCulloch, E. (2001). Important wader sites in the East Asian–Australasian flyway: 1. Western Port, Victoria, Australia. The Stilt, 38, 39–53.Google Scholar
Ma, Z. J., Li, B., Zhao, B., et al. (2004). Are artificial wetlands good alternatives to natural wetlands for waterbirds? A case study on Chongming Island, China. Biodiversity and Conservation, 13, 333–350.CrossRefGoogle Scholar
Ma, Z. J., Gan, X. J., Choi, C. Y., et al. (2007). Wintering bird communities in newly-formed wetland in the Yangtze River estuary. Ecological Research, 22, 115–124.CrossRefGoogle Scholar
Ma, Z., Gan, X., Cai, Y., Chen, J. & Li, B. (2011). Effects of exotic Spartina alterniflora on the habitat patch associations of breeding saltmarsh birds at Chongming Dongtan in the Yangtze River estuary, China. Biological Invasions, 13, 1673–1686.CrossRefGoogle Scholar
Marchant, S. & Higgins, P. J. (eds.). (1990). Handbook of Australian, New Zealand and Antarctic Birds, vol. 1: Ratites to Ducks. Melbourne: Oxford University Press.
Marchant, S. & Higgins, P. J. (eds.). (1993). Handbook of Australian, New Zealand and Antarctic Birds, vol. 2: Raptors to Lapwings. Melbourne: Oxford University Press.
Marshall, S. (2004). The meadowlands before the commission: Three centuries of human use and alteration of the Newark and Hackensack meadows. Urban Habitats, 2, 4–27.Google Scholar
McCall, B. D. & Pennings, S. C. (2012). Disturbance and recovery of salt marsh arthropod communities following BP Deepwater Horizon oil spill. PLoS ONE, 7, e32735.CrossRefGoogle ScholarPubMed
Menkhorst, P. (2010). A Survey of Colonially Breeding Birds on Mud Islands, Port Phillip, Victoria, with an Annotated List of All Terrestrial Vertebrates, Arthur Rylah Institute Technical Report 206. Heidelberg, Victoria: Department of Sustainability and Environment.Google Scholar
Mitchell, L. R., Gabrey, S., Marra, P. P. & Erwin, R. M. (2006). Impacts of marsh management on coastal-marsh bird habitats. Studies in Avian Biology, 32, 155–175.Google Scholar
Nichols, F. H., Cloern, J. E., Luoma, S. N. & Peterson, D. H. (1986). The modification of an estuary. Science, 231, 567–573.CrossRefGoogle ScholarPubMed
Nordby, J. C., Cohen, A.Beissinger, S. R. (1991). Effects of a habitat-altering invader on nesting sparrows: An ecological trap?Biological Invasions, 11, 565–575.CrossRefGoogle Scholar
Page, G. & Whitacre, D. F. (1975). Raptor predation on wintering shorebirds. Condor, 77, 73–83.CrossRefGoogle Scholar
PIF, Partners in Flight. (2007). Land Bird Population Estimate Data Base. rmbo.org/pif_db/laped/about.aspx.
Popp, M., Mirré, V. & Brochmann, C. A. (2011). A single mid-Pleistocene long-distance dispersal by a bird can explain the extreme bipolar disjunction in crowberries (Empetrum). Proceedings of the National Academy of Sciences of the United States of America, 108, 6520–6525.CrossRefGoogle Scholar
Qin, P. & Zhong, C. X. (1992). Applied Studies onSpartina. Beijing: Ocean Press.Google Scholar
Quinn, D. & Lacey, G. (1999). Birds of French Island. Richmond: Spectrum Publications.Google Scholar
Reinert, B. L., Bornschein, M. R. & Firkowski, C. (2007). Distribuição, tamanho populacional, hábitat e conservação do bicudinho-do-brejo Stymphalornis acutirostris Bornschein, Reinert e Teixeira, 1995 (Thamnophilidae). Revista Brasileira de Ornitologia, 15, 493–519.Google Scholar
Rey, J. R., Walton, W. W., Wolfe, R. J., et al. (2012). North American wetlands and mosquito control. International Journal of Environmental Research and Public Health, 9, 4537–4605.CrossRefGoogle ScholarPubMed
Rickey, M. A. & Anderson, R. C. (2004). Effects of nitrogen addition on the invasive grass Phragmites australis and a native competitor Spartina pectinata. Journal of Applied Ecology, 41, 888–896.CrossRefGoogle Scholar
Roman, C. T. & Burdick, D. M. (eds.). (2012). Tidal Marsh Restoration: A Synthesis of Science and Management. Washington, DC: Island Press.CrossRef
Rowcliffe, J. M., Watkinson, A. R., Sutherland, W. J. & Vickery, J. A. (1995). Cyclic winter grazing patterns in Brent geese and the regrowth of salt-marsh grass. Functional Ecology, 9, 931–941.CrossRefGoogle Scholar
Shan, K., Zhang, C. H. & Zhang, H. Y. (2007). Migration behavior of crane to south in Yellow River Delta Nature Reserve. Chinese Journal of Wildlife, 28, 36–38.Google Scholar
Shriver, W. G. & Gibbs, J. P. (2004). Projected effects of sea-level rise on the population viability of seaside sparrows (Ammodramus maritimus). In Akcakaya, H. R., Burgman, M. A., Kindvall, O., et al. (eds.), Species Conservation and Management: Case Studies. New York, NY: Oxford University Press, pp. 397–409.Google Scholar
Shriver, W. G., Evers, D. C., Hodgman, T. P. & MacCulloch, B. J. (2006). Hg in sharp-tailed sparrows breeding in coastal wetlands. Environmental Bioindicators, 1, 129–135.CrossRefGoogle Scholar
Silliman, B. R., Grosholz, E. D. & Bertness, M. D. (eds.). (2009). Human Impacts on Salt Marshes: A Global Perspective. Berkeley, CA: University of California Press.
Soriano, A., León, R. J. C., Sala, O. E., et al. (1991). Río de la Plata grasslands. In Coupland, R. T. (ed.), Ecosystems of the World 8A, Natural Grasslands, Introduction and Western Hemisphere. New York, NY: Elsevier, pp. 367–407.Google Scholar
Spalding, M. F., Blasco, F. & Field, C. D. (1997). World Mangrove Atlas. International Society for Mangrove Ecosystems. .Google Scholar
Spencer, J., Monamy, V. & Breitfuss, M. (2009). Saltmarsh as habitat for birds and other vertebrates. In Saintilan, N.(ed.), Australian Saltmarsh Ecology. Collingwood: CSIRO Publishing, pp. 149–165.Google Scholar
Starks, J., Brown, P., Loyn, R. & Menkhorst, P. (1992). Twelve years of winter counts of the orange-bellied parrot Neophema chrysogaster. Australian Bird Watcher, 14, 305–312.Google Scholar
Strauss, B. H., Ziemlinski, R., Weiss, J. L. & Overpeck, J. T. (2012). Tidally adjusted estimates of topographic vulnerability to sea level rise and flooding for the contiguous United States. Environmental Research Letters, 7, 014033. .CrossRefGoogle Scholar
Stuart, S. A., Choat, B., Martin, K. C., Holbrook, N. M. & Ball, M. C. (2007). The role of freezing in setting the latitudinal limits of mangrove forests. New Phytologist, 173, 576–583.CrossRefGoogle ScholarPubMed
Summers, S. W. (1977). Distribution, abundance, and energy relationships of waders (Aves: Charadrii) and Langebaan Lagoon. Transaction of the Royal Society of South Africa, 42, 483–495.CrossRefGoogle Scholar
Tebaldi, C., Strauss, B. H. & Zervus, C. E. (2012). Modeling sea level rise impacts on storm surges along the US coasts. Environmental Research Letters, 7, 014032. .CrossRefGoogle Scholar
US Fish and Wildlife Service. (2002). Birds of Conservation Concern 2002. Arlington, VA: Division of Migratory Bird Management. .Google Scholar
Van de Pol, M., Ens, B. J., Heg, D., et al. (2010). Do changes in the frequency, magnitude and timing of extreme climatic events threaten the population viability of coastal birds?Journal of Applied Ecology, 47, 720–730.CrossRefGoogle Scholar
Viglizzo, E. F., Lertora, F., Pordomingo, A. J., et al. (2001). Ecological lessons and applications from one century of low external-input farming in the Pampas of Argentina. Agriculture, Ecosystem and Environment, 83, 6–81.CrossRefGoogle Scholar
Vivian-Smith, G. & Stiles, E. W. (1994). Dispersal of salt marsh seeds on the feet and feathers of waterfowl. Wetlands, 14, 316–319.CrossRefGoogle Scholar
Wang, H., Yang, Z., Saito, Y. I., et al. (2007). Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities. Global and Planetary Change, 57, 331–354.CrossRefGoogle Scholar
Wang, Q., An, S. Q., Ma, Z. J., et al. (2006). Invasive Spartina alterniflora: Biology, ecology and management. Acta Phytotaxonomica Sinica, 44, 559–588.CrossRefGoogle Scholar
Wiese, F. K. & Ryan, P. C. (2003). The extent of chronic marine oil pollution in southeastern Newfoundland waters assessed through beached bird surveys 1984–1999. Marine Pollution Bulletin, 46, 1090–1101.CrossRefGoogle ScholarPubMed
Williams, T. P., Bubb, J. M. & Lester, J. N. (1994). Metal accumulation within salt marsh environments: A review. Marine Pollution Bulletin, 28, 277–290.CrossRefGoogle Scholar
Woodrey, M. S., Rush, S. A., Cherry, J. A., et al. (2012). Understanding the potential impact of global climate change on marsh birds in the Gulf of Mexico region. Wetlands, 32, 35–49.CrossRefGoogle Scholar
Xu, H. F. & Zhao, Y. L. (2005). Comprehensive Surveys in Chongming Dongtan Nature Reserve for Migratory Birds, Shanghai. Beijing: Chinese Forestry Publishing House.Google Scholar
Zedler, J. B., Callaway, J. C. & Sullivan, G. (2001). Declining biodiversity: Why species matter and how their functions might be restored in Californian tidal marshes. Bioscience, 51, 1005–1017.CrossRefGoogle Scholar
Zembal, R. & Hoffmann, S. M. (2010). Belding’s Savannah Sparrow Survey: 2010, Conservation and Recovery Report 2010–03. Sacramento, CA: California Department of Fish and Game.Google Scholar
Zembal, R., Hoffmann, S. M. & Koneeny, J. (2010). Status and Distribution of the Light-footed Clapper Rail in California. A report to the California Department of Fish and Game. Sacramento, CA: California Department of Fish and Game.Google Scholar
Zhang, X. L., Xu, Z. J., Zhang, Z. H., Gu, D. Q. & Ye, S. Y. (2010). Review on degradation of coastal wetland of Northern China Sea. Geological Review, 56, 561–567.Google Scholar
Zhao, D. C. (1996). Vegetation of Coastal China. Beijing: Ocean Press.Google Scholar
2
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×