Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-01T21:26:37.822Z Has data issue: false hasContentIssue false

38 - The Physics of MRI

from PART IV - MAGNETIC RESONANCE IMAGING

Published online by Cambridge University Press:  07 December 2009

J. Christian Fox
Affiliation:
University of California, Irvine
Get access

Summary

Although CT continues to be the diagnostic imaging modality of choice for many clinical situations facing the emergency physician, MRI is quickly becoming the preferred alternative for evaluating certain complaints. Not only does MRI spare the patient from exposure to the ionizing radiation of CT, but it also has a well-deserved reputation of producing superior images of soft tissue structures, such as tumors, abscesses, the brain, and the spinal cord. This chapter elucidates how these amazing images are derived, in the simplest of terms and without any of the anxiety-inducing equations for which physics is famous.

ESSENTIAL PHYSICAL PRINCIPLES

Before one can understand the physics of MRI, it is important to review some of the essential physical principles that make MRI possible. Recall from your high school physics class that the hydrogen atom consists of a proton nucleus, which carries a unit of positive electrical charge, and a single electron, which carries a negative charge equal in magnitude to that of the proton. These hydrogen atoms are the simplest and most abundant elements in the human body, serving as the basic building blocks of everything from water molecules to lipids to proteins. The atomic nuclei of these hydrogen atoms, in addition to many others, act as small magnets due to the small magnetic dipole moments that they carry.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×