We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Wood Snipe Gallinago nemoricola is one of the least known shorebird species, and its habitat associations are very poorly understood. Here we provide the first assessment of the habitat use of the Wood Snipe during the breeding season. Between May and July 2021 at a 4-km2 alpine meadow in Sichuan province, China, we conducted population surveys and behavioural observations to identify sites where breeding Wood Snipe occurred and foraged. We quantified the habitat characteristics and food resource availability of these sites and compared them with randomly selected “background” sites. Comparison between 34 occurrence sites and 25 background sites indicated that during the breeding season, Wood Snipes are not distributed evenly across alpine meadow habitats, but preferred habitats in the lower part (3,378–3,624 m) of the alpine meadow with intermediate levels of soil moisture. In addition, comparison between 17 foraging sites and 24 background sites showed that the Wood Snipe tended to forage at sites with higher soil fauna abundance. We found weak evidence for denser vegetation cover at its height and no evidence for other biotic habitat variables such as vegetation composition or other abiotic habitat variables such as slope, soil penetrability, or disturbance level to influence Wood Snipe habitat associations. Our results suggest that the actual distribution range of the Wood Snipe during the breeding season may be smaller than expected from the extent of apparently suitable habitat. We advise caution in evaluating the potential habitat availability and distribution of the Wood Snipe, and call for further research to better understand the ecology of this rare species to inform its conservation.
Cognitive decline is a public health problem for the world’s aging population. This study was to evaluate the relationships between serum iron, blood lead, cadmium, mercury, selenium, and manganese and cognitive decline in elderly Americans. Data of this cross-sectional study was extracted from the National Health and Nutritional Examination Survey (NHANES 2011-2014). Cognitive performance was measured by the consortium to establish a registry for Alzheimer’s disease (CERAD), Animal fluency, and digit symbol substitution test (DSST) tests. Weighted univariable and multivariate logistic regression analyses were used to assess the associations between six trace elements and low cognitive performance, with odds ratios (ORs) and 95% confidence intervals (CIs). Subgroup analyses based on diabetes and hypertension history were further assess the associations. A total of 2,002 adults over 60 years old were included. After adjusting covariates, elevated serum iron levels were associated with the decreased risk of low cognitive performance (OR=0.995, 95%CI: 0.990-0.999), as well as in the elderly without diabetes history (OR=0.992, 95%CI: 0.988-0.997) and with hypertension history (OR=0.993, 95%CI: 0.988-0.997) in the Animal Fluency test. High blood cadmium and blood manganese levels were associated with the odds of low cognitive performance in old adults with diabetes (OR=2.900, 95%CI: 1.311-6.417) and hypertension (OR=1.037, 95%CI: 1.009-1.066) history, respectively. In the DSST test, high blood lead levels were related to the odds of low cognitive performance (OR=1.102, 95%CI: 1.019-1.192), as well as in the elderly without diabetes (OR=1.126, 95%CI: 1.026-1.235) and hypertension (OR=1.121, 95%CI: 1.002-1.255) history. Elevated blood cadmium levels were connected with low cognitive performance in diabetic (OR=3.177, 95%CI: 1.323-7.27) and hypertensive (OR=1.896, 95%CI: 1.056-3.403) old people. High blood selenium levels were linked to the decreased risk of low cognitive performance in all the elderly (OR=0.987, 95%CI: 0.981-0.993). Appropriate iron, selenium supplementation and iron-, selenium-rich foods intake, while reducing exposure to lead, cadmium and manganese may be beneficial for cognitive function in the elderly.
When studying instability of weakly non-parallel flows, it is often desirable to convert temporal growth rates of unstable modes, which can readily be computed, to physically more relevant spatial growth rates. This has been performed using the well-known Gaster's transformation for primary instability and Herbert's transformation for the secondary instability of a saturated primary mode. The issue of temporal–spatial transformation is revisited in the present paper to clarify/rectify the ambiguity/misunderstanding that appears to exist in the literature. A temporal mode and its spatial counterpart may be related by sharing either the real frequency or wavenumber, and the respective transformations between their growth rates are obtained by a simpler consistent derivation than the original one. These transformations, which consist of first- and second-order versions, are valid under conditions less restrictive than those for Gaster's and Herbert's transformations, and reduce to the latter under additional conditions, which are not always satisfied in practice. The transformations are applied to inviscid Rayleigh instability of a mixing layer and a jet, secondary instability of a streaky flow as well as general detuned secondary instability (including subharmonic and fundamental resonances) of primary Mack modes in a supersonic boundary layer. Comparison of the transformed growth rates with the directly calculated spatial growth rates shows that the transformations derived in this paper outperform Gaster's and Herbert's transformations consistently. The first-order transformation is accurate when the growth rates are small or moderate, while the second-order transformations are sufficiently accurate across the entire instability bands, and thus stand as a useful tool for obtaining spatial instability characteristics via temporal stability analysis.
We aimed to investigate the association of metabolic obesity phenotypes with all-cause mortality risk in a rural Chinese population. This prospective cohort study enrolled 15 704 Chinese adults (38·86 % men) with a median age of 51·00 (interquartile range: 41·00–60·00) at baseline (2007–2008) and followed up during 2013–2014. Obesity was defined by waist circumference (WC: ≥ 90 cm for men and ≥ 80 cm for women) or waist-to-height ratio (WHtR: ≥ 0·5). The hazard ratio (HR) and 95 % CI for the risk of all-cause mortality related to metabolic obesity phenotypes were calculated using the Cox hazards regression model. During a median follow-up of 6·01 years, 864 deaths were identified. When obesity was defined by WC, the prevalence of participants with metabolically healthy non-obesity (MHNO), metabolically healthy obesity (MHO), metabolically unhealthy non-obesity (MUNO) and metabolically unhealthy obesity (MUO) at baseline was 12·12 %, 2·80 %, 41·93 % and 43·15 %, respectively. After adjusting for age, sex, alcohol drinking, smoking, physical activity and education, the risk of all-cause mortality was higher with both MUNO (HR = 1·20, 95 % CI 1·14, 1·26) and MUO (HR = 1·20, 95 % CI 1·13, 1·27) v. MHNO, but the risk was not statistically significant with MHO (HR = 0·99, 95 % CI 0·89, 1·10). This result remained consistent when stratified by sex. Defining obesity by WHtR gave similar results. MHO does not suggest a greater risk of all-cause mortality compared to MHNO, but participants with metabolic abnormality, with or without obesity, have a higher risk of all-cause mortality. These results should be cautiously interpreted as the representation of MHO is small.
Slowed information processing speed (IPS) is the core contributor to cognitive impairment in patients with late-life depression (LLD). The hippocampus is an important link between depression and dementia, and it may be involved in IPS slowing in LLD. However, the relationship between a slowed IPS and the dynamic activity and connectivity of hippocampal subregions in patients with LLD remains unclear.
Methods
One hundred thirty-four patients with LLD and 89 healthy controls were recruited. Sliding-window analysis was used to assess whole-brain dynamic functional connectivity (dFC), dynamic fractional amplitude of low-frequency fluctuations (dfALFF) and dynamic regional homogeneity (dReHo) for each hippocampal subregion seed.
Results
Cognitive impairment (global cognition, verbal memory, language, visual–spatial skill, executive function and working memory) in patients with LLD was mediated by their slowed IPS. Compared with the controls, patients with LLD exhibited decreased dFC between various hippocampal subregions and the frontal cortex and decreased dReho in the left rostral hippocampus. Additionally, most of the dFCs were negatively associated with the severity of depressive symptoms and were positively associated with various domains of cognitive function. Moreover, the dFC between the left rostral hippocampus and middle frontal gyrus exhibited a partial mediation effect on the relationships between the scores of depressive symptoms and IPS.
Conclusions
Patients with LLD exhibited decreased dFC between the hippocampus and frontal cortex, and the decreased dFC between the left rostral hippocampus and right middle frontal gyrus was involved in the underlying neural substrate of the slowed IPS.
In this paper, we study the ergodicity of the geodesic flows on surfaces with no focal points. Let M be a smooth connected and closed surface equipped with a
$C^{\infty }$
Riemannian metric g, whose genus
$\mathfrak {g} \geq 2$
. Suppose that
$(M,g)$
has no focal points. We prove that the geodesic flow on the unit tangent bundle of M is ergodic with respect to the Liouville measure, under the assumption that the set of points on M with negative curvature has at most finitely many connected components.
In this paper, the acoustic resonance mechanism for different axisymmetric screech modes of the underexpanded jets that impinge on an inclined plate is investigated experimentally. The ideally expanded Mach number of jets ($M_j$) ranges from 1.05 to 1.56. The nozzle-to-plate distance at the jet axis and the impingement angle are respectively set as 5.0$D$ and $30^{\circ }$, where $D$ is the nozzle exit diameter. The acoustic results show that the $M_j$ range for the A2 screech mode of impinging jets is broader than that of underexpanded free jets, and a new axisymmetric screech mode A3 appears. With the increase of $M_j$, the effect of the impinging plate on the shock cell structures of jets becomes obvious gradually, and the second suboptimal peaks are evident in the axial wavenumber spectra of mean shock structures. The coherent flow structures at screech frequencies are extracted from time-resolved schlieren images via the spectral proper orthogonal decomposition (SPOD). The axial wavenumber spectra of the selected SPOD modes suggest that the A1, A2 and A3 screech modes are respectively closed by the guided jet modes that are energized by the interactions between the Kelvin–Helmholtz wavepacket and the first three shock wavenumber peaks. The upstream- and downstream-propagating waves that constitute the screech feedback loop are analysed by applying wavenumber filters to the wavenumber spectra of SPOD modes. The frequencies of these three screech modes can be predicted by the phase constraints between the nozzle exit and the rear edge of the third shock cell. For the A3 mode, the inclined plate invades the third shock cell with the increase of $M_j$, and the phase constraint cannot be satisfied at the lower side of the jets, which leads the A3 mode to fade away. The present results suggest that external boundaries can modulate the frequency and mode of jet screech by changing the axial spacings of shock cells.
It is crucial to understand the genetic mechanisms and biological pathways underlying the relationship between obesity and serum lipid levels. Structural equation models (SEMs) were constructed to calculate heritability for body mass index (BMI), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and the genetic connections between BMI and the four classes of lipids using 1197 pairs of twins from the Chinese National Twin Registry (CNTR). Bivariate genomewide association studies (GWAS) were performed to identify genetic variants associated with BMI and lipids using the records of 457 individuals, and the results were further validated in 289 individuals. The genetic background affecting BMI may differ by gender, and the heritability of males and females was 71% (95% CI [.66, .75]) and 39% (95% CI [.15, .71]) respectively. BMI was positively correlated with TC, TG and LDL-C in phenotypic and genetic correlation, while negatively correlated with HDL-C. There were gender differences in the correlation between BMI and lipids. Bivariate GWAS analysis and validation stage found 7 genes (LOC105378740, LINC02506, CSMD1, MELK, FAM81A, ERAL1 and MIR144) that were possibly related to BMI and lipid levels. The significant biological pathways were the regulation of cholesterol reverse transport and the regulation of high-density lipoprotein particle clearance (p < .001). BMI and blood lipid levels were affected by genetic factors, and they were genetically correlated. There might be gender differences in their genetic correlation. Bivariate GWAS analysis found MIR144 gene and its related biological pathways may influence obesity and lipid levels.
This study addresses orbit design and optimisation for the situation of satellite interception in which the target spacecraft is capable of manoeuvring using continuous magnitude restricted thrust. For the purpose of designing a long-range continuous thrust interception orbit, the orbit motion equations of two satellites with J2 perturbation are constructed. This problem is assumed to be a typical pursuit-evasion problem in differential game theory; using boundary constraint conditions and a performance index function that includes time and fuel consumption, the saddle point solution corresponding to the bilateral optimal is derived, and then this pursuit-evasion problem is transformed into a two-point boundary value problem. A hybrid optimisation method using a genetic algorithm (GA) and sequential quadratic programming (SQP) is derived to obtain the optimal control strategy. The proposed model and algorithm are proved to be feasible for the given simulation cases.
The flow past a cylinder in proximity to a plane wall is investigated numerically for small gap ratios. Three vortex dynamic processes associated with different hairpin vortex generation mechanisms are identified for the first time, and the wake-induced turbulent transition is analysed. The vortex shedding is suppressed at $G/D = 0.1$, while the spanwise vortex is generated via a Kelvin–Helmholtz instability and evolves into hairpin vortices. For $G/D= 0.3$, the upper and lower rollers alternatively shedding from the cylinder, interact with the secondary vortex. The split secondary vortex merges with the upper roller and results in a new vortex downstream, which develops into hairpin vortices. When $G/D = 0.9$, the secondary vortex interacts with the lower roller and then evolves into hairpin vortices. A tertiary vortex induced by the secondary vortex is observed, rotating in the opposite direction to the secondary vortex the wake-induced transitions share the same route. The velocity fluctuations deviate from the optimal growth theory in the pre-transitional region. In the transitional region low-frequency disturbances penetrate the sheltering edge to generate streaks where the disturbance energy declines. In the turbulent region the logarithmic layer is formed, indicating that the turbulent equilibrium is established.
Metamorphic robots are a new type of unmanned vehicle that can reconfigure and morph between a car mode and a biped walking machine mode. Such a vehicle is superior in trafficability because it can drive at high speeds on its wheels on structured pavement and walk on its legs on unstructured pavement. An engineering prototype of a metamorphic robot was proposed and designed based on the characteristics of wheeled–legged hybrid motion, and reconfiguration planning of the robot was conducted. A kinematics model of the reconfiguration process was established using the screw theory for metamorphic robots. To avoid component impact during the rapid global reconfiguration and achieve smoothness of the reconfiguration process, a rotation rule for each rotating joint was designed and the kinematics model was used to simulate and validate the motion of the system’s end mechanism (front frame) and the entire robot system. Based on the kinematics model and the rotation rules of the rotating joints, a zero-moment point (ZMP) calculation model of the entire robot mechanism in the reconfiguration process was established, and the stability of the reconfiguration motions was evaluated based on the ZMP motion trajectory. The foot landing position was optimized to improve the robot’s stability during the reconfiguration. Finally, the smoothness and stability of the reconfiguration motion were further validated by testing the prototype of the metamorphic robot.
In this work, theoretical modelling, quasi-three-dimensional (quasi-3D) simulations and micromodel experiments are conducted to study spontaneous imbibition with gravity in porous media micromodels. By establishing the force balance governing the spontaneous imbibition process, we develop a theoretical model for predicting the imbibition length against time in a rectangular capillary. The theoretical model is then extended to the prediction of a compact displacement process in a micromodel by using an equivalent width, which is derived by analogising the micromodel to a rectangular capillary. By simulating spontaneous imbibition in a rectangular capillary with various aspect ratios ($\varepsilon$), we show that the application condition of the quasi-3D method is $\varepsilon \leqslant 1/3$. Next, we simulate spontaneous imbibition in micromodels with various geometries and flow conditions. Fingering and compact displacement are identified for varying viscosity ratios and gravitational accelerations. At low (high) viscosity ratio of wetting to non-wetting fluids, an upward (downward) gravity can promote the stability of the wetting front, favouring the transition from fingering to compact displacement. In addition, we find that the depth-oriented interface curvature dominates the capillary effect during the imbibition, and such a mechanism is considered by introducing an equivalent contact angle into the theoretical model. With the help of equivalent width and contact angle, the theoretical model is shown to provide satisfactory prediction of the compact displacement process. Finally, a micromodel experiment is presented to further verify the developed theoretical model and the quasi-3D simulation.
Meristems in land plants share conserved functions but develop highly variable structures. Meristems in seed-free plants, including ferns, usually contain one or a few pyramid-/wedge-shaped apical cells (ACs) as initials, which are lacking in seed plants. It remained unclear how ACs promote cell proliferation in fern gametophytes and whether any persistent AC exists to sustain fern gametophyte development continuously. Here, we uncovered previously undefined ACs maintained even at late developmental stages in fern gametophytes. Through quantitative live-imaging, we determined division patterns and growth dynamics that maintain the persistent AC in Sphenomeris chinensis, a representative fern. The AC and its immediate progenies form a conserved cell packet, driving cell proliferation and prothallus expansion. At the apical centre of gametophytes, the AC and its adjacent progenies display small dimensions resulting from active cell division instead of reduced cell expansion. These findings provide insight into diversified meristem development in land plants.
As an internal time-keeping mechanism, circadian rhythm plays crucial role in maintaining homoeostasis when in response to nutrition change; meanwhile, branched-chain amino acids (BCAA) in skeletal muscle play an important role in preserving energy homoeostasis during fasting. Previous results from our laboratory suggested that fasting can influence peripheral circadian rhythm and BCAA metabolism in fish, but the relationship between circadian rhythm and BCAA metabolism, and whether circadian rhythm regulates BCAA metabolism to maintain physiological homoeostasis during fasting remains unclear. This study shows that the expression of fifteen core clock genes as well as KLF15 and Bcat2 is highly responsive to short-term fasting in fast muscle of Siniperca chuatsi, and the correlation coefficient between Clock and KLF15 expression is enhanced after fasting treatment. Furthermore, we demonstrate that the transcriptional expression of KLF15 is regulated by Clock, and the transcriptional expression of Bcat2 is regulated by KLF15 by using dual-luciferase reporter gene assay and Vivo-morpholinos-mediated gene knockdown technique. Therefore, fasting imposes a dynamic coordination of transcription between the circadian rhythm and BCAA metabolic pathways. The findings highlight the interaction between circadian rhythm and BCAA metabolism and suggest that fasting induces a switch in KLF15 expression through affecting the rhythmic expression of Clock, and then KLF15 promotes the transcription of Bcat2 to enhance the metabolism of BCAA, thus maintaining energy homoeostasis and providing energy for skeletal muscle as well as other tissues.
We report dispersion management based on a mismatched-grating compressor for a 100 PW level laser, which utilizes optical parametric chirped pulse amplification and also features large chirped pulse duration and an ultra-broadband spectrum. The numerical calculation indicates that amplified pulses with 4 ns chirped pulse duration and 210 nm spectral bandwidth can be directly compressed to sub-13 fs, which is close to the Fourier-transform limit (FTL). More importantly, the tolerances of the mismatched-grating compressor to the misalignment of the stretcher, the error of the desired grating groove density and the variation of material dispersion are comprehensively analyzed, which is crucially important for its practical application. The results demonstrate that good tolerances and near-FTL compressed pulses can be achieved simultaneously, just by keeping a balance between the residual second-, third- and fourth-order dispersions in the laser system. This work can offer a meaningful guideline for the design and construction of 100 PW level lasers.
Although attentional bias modification training (ABM) and cognitive behavioural therapy (CBT) are two effective methods to decrease the symptoms of generalized anxiety disorders (GAD), to date, no randomized controlled trials have yet evaluated the effectiveness of an intervention combining internet-based cognitive behavioural therapy (ICBT) and ABM for adults with GAD.
Aims:
This study aimed to investigate the effectiveness of an intervention combining ICBT and ABM for adults with GAD.
Method:
Sixty-three participants diagnosed with GAD were randomly assigned to the treatment group (ICBT with ABM; 31 participants) or the control group (ICBT with ABM placebo; 32 participants), and received 8 weeks of treatment and three evaluations. The CBT, ABM and ABM-placebo training were conducted via the internet. The evaluations were conducted at baseline, 8 weeks later, and 1 month later, respectively.
Results:
Both the treatment and control groups reported significantly reduced anxiety symptoms and attentional bias, with no clear superiority of either intervention. However, the treatment group showed a greater reduction in negative automatic thoughts than the control group after treatment and at 1-month follow-up (η2 = 0.123).
Conclusion:
The results suggest that although not differing in therapeutic efficacy, the intervention combining ICBT and ABM is superior to the intervention combining ICBT and ABM-placebo in the reduction of negative automatic thoughts. ABM may be a useful augmentation of ICBT on reducing anxiety symptoms.
High-performance mullite-based composite ceramics were prepared successfully using natural kaolin and alumina as raw materials and ZrO2 as an additive. The influence of sintering temperature and ZrO2 content on the sintering behaviour and mechanical properties of zirconia-toughened mullite ceramics was studied systematically. With increasing sintering temperature from 1450°C to 1560°C, the primary phases of as-sintered composite ceramics were mullite and corundum with a small amount of ZrO2, and the bulk density of the composite ceramics increased from 2.29 to 2.72 g cm–3. Furthermore, the ZrO2 phase transition promoted transgranular fracture, and ZrO2 grains were pinned at the grain boundaries, thereby enhancing the mechanical strength of the composite ceramics. Moreover, the AZS12 sample, with 12 wt.% ZrO2 and sintered at 1560°C, had the greatest flexural strength and fracture toughness of 91.6 MPa and 2.47 MPa m–1/2, respectively. Adding ZrO2 to the composite ceramics increased their flexural strength by ~37.6%.
Recently, the collisionless pitch-angle scattering for relativistic runaway electrons (REs) in toroidal geometries such as tokamaks was discovered through a full orbit simulation approach (Liu et al., Nucl. Fusion, vol. 56, 2016, p. 064002), and it was then theoretically investigated that a new expression for the magnetic moment, including the second-order corrections, could essentially reproduce the so-called collisionless pitch-angle scattering process (Liu et al., Nucl. Fusion, vol. 58, 2018, p. 106018). In this paper, with synchrotron radiation, extensive numerical verification of the validity of the high-order guiding-centre theory is given for simulations involving REs by incorporating such an expression for the magnetic moment into our particle tracing code. A high-order guiding-centre simulation approach with synchrotron radiation (HGSA) is applied. Synchrotron radiation plays an essential role in the life cycle of REs. The energy of REs first increases and then becomes saturated until the electric field acceleration is balanced by the radiation dissipation. Unfortunately, the process cannot be simulated accurately with the standard guiding-centre model, i.e. the first-order guiding-centre model. Remarkably, it is found that the HGSA can effectively produce the fundamental process of REs. Since the time scale of the energy saturation of REs is close to seconds, the computational cost becomes significant. In order to save costs, it is necessary to estimate the time of energy saturation. An analytical estimate is derived for the time it takes for synchrotron drag to balance an accelerating electric field and the provided formula has been numerically verified. Test calculations reveal that HGSA is favourable for exploiting the dynamics of REs in tokamak plasmas.
It has been suggested that added sugar intake is associated with non-alcoholic fatty liver disease (NAFLD). However, previous studies only focused on sugar-sweetened beverages; the evidence for associations with total added sugars and their sources is scarce. This study aimed to examine the associations of total added sugars, their physical forms (liquid v. solid) and food sources with risk of NAFLD among adults in Tianjin, China. We used data from 15 538 participants, free of NAFLD, other liver diseases, CVD, cancer or diabetes at baseline (2013–2018 years). Added sugar intake was estimated from a validated 100-item FFQ. NAFLD was diagnosed by ultrasonography after exclusion of other causes of liver diseases. Multivariable Cox proportional hazards models were fitted to calculate hazard ratios (HR) and corresponding 95 % CI for NAFLD risk with added sugar intake. During a median follow-up of 4·2 years, 3476 incident NAFLD cases were documented. After adjusting for age, sex, BMI and its change from baseline to follow-up, lifestyle factors, personal and family medical history and overall diet quality, the multivariable HR of NAFLD risk were 1·18 (95 % CI 1·06, 1·32) for total added sugars, 1·20 (95 % CI 1·08, 1·33) for liquid added sugars and 0·96 (95 % CI 0·86, 1·07) for solid added sugars when comparing the highest quartiles of intake with the lowest quartiles of intake. In this prospective cohort of Chinese adults, higher intakes of total added sugars and liquid added sugars, but not solid added sugars, were associated with a higher risk of NAFLD.