We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Radiocarbon (14C) is an isotopic tracer used to address a wide range of scientific research questions. However, contamination by elevated levels of 14C is deleterious to natural-level laboratory workspaces and accelerator mass spectrometer facilities designed to precisely measure small amounts of 14C. The risk of contaminating materials and facilities intended for natural-level 14C with elevated-level 14C-labeled materials has dictated near complete separation of research groups practicing profoundly different measurements. Such separation can hinder transdisciplinary research initiatives, especially in remote and isolated field locations where both natural-level and elevated-level radiocarbon applications may be useful. This paper outlines the successful collaboration between researchers making natural-level 14C measurements and researchers using 14C-labeled materials during a subglacial drilling project in West Antarctica (SALSA 2018–2019). Our strict operating protocol allowed us to successfully carry out 14C labeling experiments within close quarters at our remote field camp without contaminating samples of sediment and water intended for natural level 14C measurements. Here we present our collaborative protocol for maintaining natural level 14C cleanliness as a framework for future transdisciplinary radiocarbon collaborations.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
Growth patterns are known to differ between breastfed and formula-fed infants, but little is known about the relative impact of maternal smoking in pregnancy v. feeding mode on growth trajectory in infancy. We conducted a secondary analysis of a trial, the Tolerance of Infant Goat Milk Formula and Growth Assessment trial involving 290 healthy infants, to examine whether smoking in pregnancy modified the association between feeding mode and body composition of infants. Fat mass (FM) and fat-free mass (FFM) were estimated at 1, 2, 3, 4, 6 and 12 months of age using bioimpedance spectroscopy. Formula-fed infants (n 190) had a higher mean FFM at 4 months (mean difference (MD) 160 g, 95 % CI 50·4, 269·5 g, P < 0·05)) and 6 months (MD 179 g, 95 % CI 41·5, 316·9 g, P < 0·05) compared with the breastfed infants (n 100). Sub-group analysis of breastfed v. formula-fed infants by maternal smoking status in pregnancy showed that there were no differences in the FM and FFM between the breastfed and formula-fed infants whose mothers did not smoke in pregnancy. Formula-fed infants whose mothers smoked in pregnancy were smaller at birth and had a lower FM% and higher FFM% at 1 month compared with infants of non-smoking mothers regardless of feeding mode, but the differences were not significant at other time points. Adequately powered prospective studies with an appropriate design are warranted to better understand the relative impact of maternal smoking, feeding practice and the growth trajectory of infants.
OBJECTIVES/SPECIFIC AIMS: Our objective was to assess and compare the attitudes of patients with head and neck cancer and their clinicians regarding the commercialization of genetic research data. We explored whether such opinions changed when profits from such transactions were used to fund 1) cancer research, 2) academic research generally, or 3) if patients were given personalized genetic information in return. METHODS/STUDY POPULATION: This qualitative analysis was nested within a prospective precision oncology genomic sequencing study in an NCI-designated cancer center. We conducted paired, semi-structured interviews with enrolled participants with head & neck cancer and with their doctors (medical oncologists, surgical oncologists, and radiation oncologists). Interviews were recorded, transcribed, and coded for analysis. Codes were developed through an iterative process until saturation was reached, and all transcripts were double-coded (and discrepancies reconciled) to ensure reliability. RESULTS/ANTICIPATED RESULTS: We identified three main themes from the patients and clinicians: (1) Both clinicians and their patients were unclear about how the study protocol and informed consent form authorized patients’ genetic data to be used and commercialized in the future. (2) Patients with cancer were generally more comfortable than their clinician thought they were regarding the ongoing research use of their genetic data and commercialization thereof. (3) There is a strong interest among patients and clinicians in focusing academic medical center profits from commercialization back into the research program from which the data was acquired, rather than being invested into academic research more broadly. DISCUSSION/SIGNIFICANCE OF IMPACT: Given patients’ strong feelings about the commercialization of their data, our results highlight the need for greater transparency—both with patients and with their clinicians—about potential future use of research data. Clinicians appear inclined to be particularly cautious regarding access to and commercialization of patients’ data, however patients generally hope that their data may be used to help future cancer patients. Explicit discussions with patients about specific future uses of profits derived from commercialization of research data can ensure both transparency and participation in future primary and secondary precision health research programs.
Childhood obesity rates are higher among Indigenous compared with non-Indigenous Australian children. It has been hypothesized that early-life influences beginning with the intrauterine environment predict the development of obesity in the offspring. The aim of this paper was to assess, in 227 mother–child dyads from the Gomeroi gaaynggal cohort, associations between prematurity, Gestation Related-Optimal Weight (GROW) centiles, maternal adiposity (percentage body fat, visceral fat area), maternal non-fasting plasma glucose levels (measured at mean gestational age of 23.1 weeks) and offspring BMI and adiposity (abdominal circumference, subscapular skinfold thickness) in early childhood (mean age 23.4 months). Maternal non-fasting plasma glucose concentrations were positively associated with infant birth weight (P=0.005) and GROW customized birth weight centiles (P=0.008). There was a significant association between maternal percentage body fat (P=0.02) and visceral fat area (P=0.00) with infant body weight in early childhood. Body mass index (BMI) in early childhood was significantly higher in offspring born preterm compared with those born at term (P=0.03). GROW customized birth weight centiles was significantly associated with body weight (P=0.01), BMI (P=0.007) and abdominal circumference (P=0.039) at early childhood. Our findings suggest that being born preterm, large for gestational age or exposed to an obesogenic intrauterine environment and higher maternal non-fasting plasma glucose concentrations are associated with increased obesity risk in early childhood. Future strategies should aim to reduce the prevalence of overweight/obesity in women of child-bearing age and emphasize the importance of optimal glycemia during pregnancy, particularly in Indigenous women.
The aim of the present paper is to summarise current and future applications of dietary assessment technologies in nutrition surveys in developed countries. It includes the discussion of key points and highlights of subsequent developments from a panel discussion to address strengths and weaknesses of traditional dietary assessment methods (food records, FFQ, 24 h recalls, diet history with interviewer-assisted data collection) v. new technology-based dietary assessment methods (web-based and mobile device applications). The panel discussion ‘Traditional methods v. new technologies: dilemmas for dietary assessment in population surveys’, was held at the 9th International Conference on Diet and Activity Methods (ICDAM9), Brisbane, September 2015. Despite respondent and researcher burden, traditional methods have been most commonly used in nutrition surveys. However, dietary assessment technologies offer potential advantages including faster data processing and better data quality. This is a fast-moving field and there is evidence of increasing demand for the use of new technologies amongst the general public and researchers. There is a need for research and investment to support efforts being made to facilitate the inclusion of new technologies for rapid, accurate and representative data.
Monolithic integrated thin film tandem solar cells consisting of a high bandgap perovskite top cell and a low bandgap thin film bottom cell are expected to reach higher power conversion efficiencies (PCEs) with lower manufacturing cost and environmental impacts than the market-dominant crystalline silicon photovoltaics. There have been several demonstrations of 4-terminal and 2-terminal perovskite tandem devices with CuInGaSe2 (CIGS) or CuInSe2 (CIS) and, similar to the other tandem structures, the optimization of this device relies on optimal choice for the perovskite bandgap and thickness. Therefore, further advancement will be enabled by tuning the perovskite absorber to maximize the photocurrent limited by the current match condition. Here, we systematically study the optical absorption and transmission of perovskite thin films with varying absorber band gap. Based on these results, we model the photocurrent generations in both perovskite and CIS subcells and estimate the performances of projected tandem devices by considering the ideally functioning perovskite and CIS device. Our results show that for perovskite layers with 500 nm thickness the optimal bandgap is around 1.6 eV. With these configurations, PCEs above 20% could be achieved by monolithically integrated perovskite/CIS tandem solar cells. Also by modelling the absorption at every layer we calculate the quantum efficiency at each subcell in addition to tracking optical losses.
Photoluminescence (PL) spectroscopy has been used to study the defect levels in thin film copper indium diselenide (CuInSe2, CIS) which we are developing as the absorber layer for the bottom cell of a monolithically grown perovskite/CuInSe2 tandem solar cell. Temperature and laser power dependent PL measurements of thin film CIS for two different Cu/In ratios (0.66 and 0.80) have been performed. The CIS film with Cu/In = 0.80 shows a prominent donor-to-acceptor peak (DAP) involving a shallow acceptor of binding energy ∼22 meV, with phonon replica at ∼32 meV spacing. In contrast, PL measurement of CIS film for Cu/In = 0.66 taken at 20 K exhibited an asymmetric and broad PL spectrum with peaks at 0.845 eV and 0.787 eV. Laser intensity dependent PL revealed that the observed peaks 0.845 eV and 0.787 eV shift towards higher energy (aka j-shift) at ∼11.7 meV/decade and ∼ 8 meV/decade with increase in laser intensity respectively. The asymmetric and broad spectrum together with large j-shift suggests that the observed peaks at 0.845 eV and 0.787 eV were related to band-to-tail (BT) and band-to-impurity (BI) transition, respectively. Such a band-tail-related transition originates from the potential fluctuation of defect states at low temperature. The appearance of band related transition in CIS film with Cu/In = 0.66 is the indicator of the presence of large number of charged defect states.
Most studies on dietary vegetable oil in rainbow trout (Oncorhynchus mykiss) have been conducted on a background of dietary EPA (20 : 5n-3) and DHA (22 : 6n-3) contained in the fishmeal used as a protein source in aquaculture feed. If dietary EPA and DHA repress their endogenous synthesis from α-linolenic acid (ALA, 18 : 3n-3), then the potential of ALA-containing vegetable oils to maintain tissue EPA and DHA has been underestimated. We examined the effect of individual dietary n-3 PUFA on the expression of the biosynthetic genes required for metabolism of ALA to DHA in rainbow trout. A total of 720 juvenile rainbow trout were allocated to twenty-four experimental tanks and assigned one of eight diets. The effect of dietary ALA, EPA or DHA, in isolation or in combination, on hepatic expression of fatty acyl desaturase (FADS)2a(Δ6), FADS2b(Δ5), elongation of very long-chain fatty acid (ELOVL)5 and ELOVL2 was examined after 3 weeks of dietary intervention. The effect of these diets on liver and muscle phospholipid PUFA composition was also examined. The expression levels of FADS2a(Δ6), ELOVL5 and ELOVL2 were highest when diets were high in ALA, with no added EPA or DHA. Under these conditions ALA was readily converted to tissue DHA. Dietary DHA had the largest and most consistent effect in down-regulating the gene expression of all four genes. The ELOVL5 expression was the least responsive of the four genes to dietary n-3 PUFA changes. These findings should be considered when optimising aquaculture feeds containing vegetable oils and/or fish oil or fishmeal to achieve maximum DHA synthesis.
Identifying animals to species from relict proteins is a powerful new archaeological tool. Here the authors apply the method to answer questions relating to the Salish of west coast North America. Did they weave their blankets out of dog hair? The proteomic analysis shows that they did, interweaving it with goat, and that the woolly dog was increasingly superseded by sheep in the later nineteenth century.
The effect of the dietary n-3 long-chain PUFA, DHA (22 : 6n-3), on the growth of pre-term infants is controversial. We tested the effect of higher-dose DHA (approximately 1 % dietary fatty acids) on the growth of pre-term infants to 18 months corrected age compared with standard feeding practice (0·2–0·3 % DHA) in a randomised controlled trial. Infants born < 33 weeks gestation (n 657) were randomly allocated to receive breast milk and/or formula with higher DHA or standard DHA according to a concealed schedule stratified for sex and birth-weight ( < 1250 and ≥ 1250 g). The dietary arachidonic acid content of both diets was constant at approximately 0·4 % total fatty acids. The intervention was from day 2 to 5 of life until the infant's expected date of delivery (EDD). Growth was assessed at EDD, and at 4, 12 and 18 months corrected age. There was no effect of higher DHA on weight or head circumference at any age, but infants fed higher DHA were 0·7 cm (95 % CI 0·1, 1·4 cm; P = 0·02) longer at 18 months corrected age. There was an interaction effect between treatment and birth weight strata for weight (P = 0·01) and length (P = 0·04). Higher DHA resulted in increased length in infants born weighing ≥ 1250 g at 4 months corrected age and in both weight and length at 12 and 18 months corrected age. Our data show that DHA up to 1 % total dietary fatty acids does not adversely affect growth.